Self Studies

Determinants Test - 18

Result Self Studies

Determinants Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$A = \begin{bmatrix}1&2\\3&4\end{bmatrix}, B = \begin{bmatrix}2&1\\3&4\end{bmatrix}$$ then $$\left|(B^TA^T)^{-1}\right|$$ is equal to
    Solution
    $$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$ $$B = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$$

    $$B^{T}A^{T} =  \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 2 + 6 & 6 + 12 \\ 1 + 8 & 3 + 16 \end{bmatrix} = \begin{bmatrix} 8 & 18 \\ 9 & 19 \end{bmatrix}$$

    $$det (B^{T}A^{T}) = 8 \times 19 - 9 \times 18 = 152 - 162 = -10$$
    $$(B^TA^T)^{-1} = \dfrac1{det(B^TA^T)} adj(B^TA^T) = \dfrac{1}{-10}\begin{bmatrix}19&-18\\-9&8\end{bmatrix}$$

    $$det( (B^{T}A^{T})^{-1}) =\dfrac{19\times8 - 18\times9}{-10}  = 1$$
  • Question 2
    1 / -0
    If $$\begin{vmatrix}a&a^3 &a^4-1\\b&b^3&b^4-1\\c&c^3&c^4-1\end{vmatrix}=0$$ and $$a,b,c$$ are all distinct then $$abc (ab+bc+ca)$$ is equal to
    Solution
    Given, $$\begin{vmatrix}a&a^3 &a^4-1\\b&b^3&b^4-1\\c&c^3&c^4-1\end{vmatrix}=0$$
    Doing Row operation $$R_1\to R_1-R_2,R_3\to R_3-R_2$$
    $$\begin{vmatrix}a-b&a^3-b^3 &a^4-b^4\\b&b^3&b^4-1\\c-b&c^3-b^3&c^4-b^4\end{vmatrix}=0$$
    $$\begin{vmatrix}a-b&(a-b)(a^2+b^2+ab) &(a^2+b^2)(a+b)(a-b)\\b&b^3&b^4-1\\c-b&(c-b)(b^2+c^2+cb)&(c^2+b^2)(c+b)(c-b)\end{vmatrix}=0$$
    Taking out $$(a-b)$$ and $$(c-b)$$ from the determinant and Doing Row operations $$R_1 \to R_1-R_3$$ 
    $$(a-b)(c-b)\begin{vmatrix}0&a^2-c^2+b(a-c) &(a^3-c^3)+b^2(a-c)+b(a^2-c^2)\\b&b^3&b^4-1\\1&(b^2+c^2+cb)&(c^2+b^2)(c+b)\end{vmatrix}=0$$
    $$(a-b)(c-b)(a-c)\begin{vmatrix}0&a+c+b &(a^2+c^2+ac)+b^2+b(a+c)\\b&b^3&b^4-1\\1&(b^2+c^2+cb)&(c^2+b^2)(c+b)\end{vmatrix}=0$$
    Since $$a,b,c$$ are distinct. 
    $$\begin{vmatrix}0&a+c+b &(a^2+c^2+ac)+b^2+b(a+c)\\b&b^3&b^4-1\\1&(b^2+c^2+cb)&(c^2+b^2)(c+b)\end{vmatrix}=0$$
    Doing Row operation $$R_2 \to R_2-bR_3$$
    $$\begin{vmatrix}0&a+c+b &(a^2+c^2+ac)+b^2+b(a+c)\\0&-bc^2-cb^2&-bc^3-c^2b^2-b^3c-1\\1&(b^2+c^2+cb)&(c^2+b^2)(c+b)\end{vmatrix}=0$$
    Doing Row operation $$R_2 \to R_2+cbR_1$$
    $$\begin{vmatrix}0&a+c+b &(a^2+c^2+ac)+b^2+b(a+c)\\0&abc&abc(a+b+c)-1\\1&(b^2+c^2+cb)&(c^2+b^2)(c+b)\end{vmatrix}=0$$
    Expanding Determinant, w eget
    $$abc(a+b+c)^2-(a+b+c)-abc(a^2+b^2+c^2)-abc(ab+bc+ac)=0$$
    $$\Rightarrow  abc(ab+bc+ac)=abc((a+b+c)^2-a^2-b^2-c^2)-(a+b+c)$$
    $$\Rightarrow abc(ab+bc+ca)=abc(2(ab+bc+ac))-(a+b+c)$$
    $$\Rightarrow  abc(ab+bc+ac)=a+b+c$$
    Hence, option A is correct.
  • Question 3
    1 / -0
    If three points $$(k, 2k), (2k, 3k), (3, 1)$$ are collinear, then $$k$$ is equal to:
    Solution
    If given points are collinear, then
    $$\begin{vmatrix} k&2k&1\\2k&3k&1\\3&1&1\end{vmatrix}=0$$
    $$\Rightarrow \begin{vmatrix} k&2k&1\\k&k&0\\3&1&1\end{vmatrix}=0, R_2\rightarrow R_2-R_1$$ 
    $$\Rightarrow 1(k-3k)+1(k^2-2k^2)=0$$
    $$\Rightarrow k^2+2k=0$$
    $$\Rightarrow k=0,-2$$ 
  • Question 4
    1 / -0
    $$\left|\begin{array}{lllll}
    0 & & \mathrm{c}\mathrm{o}\mathrm{s}\alpha & \mathrm{c}\mathrm{o}\mathrm{s} & \beta\\
    \mathrm{c}\mathrm{o}\mathrm{s} & \alpha & 0 & \mathrm{c}\mathrm{o}\mathrm{s} & \gamma\\
    \mathrm{c}\mathrm{o}\mathrm{s} & \beta & \mathrm{c}\mathrm{o}\mathrm{s}\gamma & 0 &
    \end{array}\right|=$$
    Solution
    Let $$A=\begin{vmatrix}
    0 & cos \alpha & \cos \beta\\
    \cos \alpha & 0 & cos \gamma\\
     cos \beta & \cos \gamma & 0
    \end{vmatrix}$$

    Expanding the determinant,
    $$A=-cos \alpha[-cos \beta cos \gamma]+cos \beta[cos \alpha \cos \gamma]$$
        $$=2 \cos \alpha \cos \beta \cos \gamma$$
  • Question 5
    1 / -0
    If A $$ =\begin{bmatrix}
    0 & c &-b \\
    -c& 0& a\\
    b & -a & 0
    \end{bmatrix}$$ then $$\left ( a^{2}+b^{2}-c^{2} \right )\left | A \right |=$$ 
    Solution
    $$|A|=0\times(a^2)-c(-ab)-b(ac)$$
    $$=0+abc-abc$$
    $$=0$$
  • Question 6
    1 / -0
    $$\begin{vmatrix}
    x^{2}+3 &x-1 &x+3 \\
    x+3 & -2x &x-4 \\
    x-3& x+4 & 3x
    \end{vmatrix}$$ $$=px^{4}+qx^3+rx^{2}+sx+t,$$  then $$t = $$
    Solution
    On expanding the determinant we get,

    $$(x^2+3)(-6x^2-x^2+16)-(x-1)(3x^2+9x-x^2+7x-12)+(x+3)(x^2+7x+12-2x^2+6x)$$

    Let us consider only the constant terms,

    since $$t$$ is constant term
     
    $$\therefore (16)(3)-(-1)(-12)+3(12) =72$$ 

    Hence, $$t = 72 $$
  • Question 7
    1 / -0
    Maximum value of a second order determinant whose every element is either 0,1 or 2 only is:
    Solution
    So, $$A=\begin{bmatrix}
    a & b\\
    c & d
    \end{bmatrix}
    $$ Given a,b,c & D can only be 0,1,2
    det A= ad-bc
    So for max. value of A,
    a=2 and d=2 and $$b,c \epsilon {0,0}$$
    So, Max value of det $$A=\begin{bmatrix}
    2 & 0\\
    0 & 2
    \end{bmatrix}=4$$
  • Question 8
    1 / -0
    If abc $$\neq $$0 and if $$\begin{vmatrix}
    a & b & c\\
    b & c & a\\
    c & a & b
    \end{vmatrix}$$ = 0 then $$\dfrac{a^{3}+b^{3}+c^{3}}{abc}$$ 
    Solution
    $$\begin{vmatrix}
    a & b & c\\
    b & c & a\\
    c & a & b
    \end{vmatrix}$$
    $$=a(bc-a^2)-b(b^2-ac)+c(ab-c^2)$$
    $$=3abc-a^3-b^3-c^3$$
    Given,
    $$\begin{vmatrix}
    a & b & c\\
    b & c & a\\
    c & a & b
    \end{vmatrix} = 0$$

    So, $$\dfrac{a^3+b^3+c^3}{abc}=3$$

  • Question 9
    1 / -0
    If P =$$\begin{bmatrix}
    1 & 4\\
    2 & 6
    \end{bmatrix}$$ ,then adj (P) 
    Solution
    Cofactor of the martix is 
    $$\begin{bmatrix} M11 & -M12 \\ -M21 & M22 \end{bmatrix}\\$$
     Where$$ M11 = 6$$
    $$M12 = 2$$
    $$M21 = 4$$
    $$M22 = 1$$
    Substituting all value we get
    Cofactor of the matrix as 
    $$\begin{bmatrix} 6 & -2 \\ -4 & 1 \end{bmatrix}\\$$
    The adjoint of the matrix is transpose of cofactor of the given matrix
    $$\therefore $$ Adjoint of the matrix is
    $$\begin{bmatrix} 6 & -4 \\ -2 & 1 \end{bmatrix}$$
    Hence the answer is option B.
  • Question 10
    1 / -0
    If $$A=\left\{\begin{array}{lll}
    a & b & c\\
    b & c & a\\
    c & a & b
    \end{array}\right\}$$ then cofactor of $$\mathrm{a}_{21}$$ is:
    Solution
    By property of co-factor of matrix(2),
    cofactor of $$a_{ij}=M_{ij}\times (-1)^{i+j}$$
    $$\therefore$$ minor of $$a_{21}=\begin{vmatrix}
    a_{12} & a_{13}\\
    a_{32} & a_{33}
    \end{vmatrix}=\begin{vmatrix}
    b & c\\
    a & b
    \end{vmatrix}$$
    $$M_{21}=b^2-ac$$
    So, co factor of $$a_{21}=M_{21}\times(-1)^{1+2}=-M_{21}$$
    $$=ac-b^2$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now