Given, $$\begin{vmatrix}a&a^3 &a^4-1\\b&b^3&b^4-1\\c&c^3&c^4-1\end{vmatrix}=0$$
Doing Row operation $$R_1\to R_1-R_2,R_3\to R_3-R_2$$
$$\begin{vmatrix}a-b&a^3-b^3 &a^4-b^4\\b&b^3&b^4-1\\c-b&c^3-b^3&c^4-b^4\end{vmatrix}=0$$
$$\begin{vmatrix}a-b&(a-b)(a^2+b^2+ab) &(a^2+b^2)(a+b)(a-b)\\b&b^3&b^4-1\\c-b&(c-b)(b^2+c^2+cb)&(c^2+b^2)(c+b)(c-b)\end{vmatrix}=0$$
Taking out $$(a-b)$$ and $$(c-b)$$ from the determinant and Doing Row operations $$R_1 \to R_1-R_3$$
$$(a-b)(c-b)\begin{vmatrix}0&a^2-c^2+b(a-c) &(a^3-c^3)+b^2(a-c)+b(a^2-c^2)\\b&b^3&b^4-1\\1&(b^2+c^2+cb)&(c^2+b^2)(c+b)\end{vmatrix}=0$$
$$(a-b)(c-b)(a-c)\begin{vmatrix}0&a+c+b &(a^2+c^2+ac)+b^2+b(a+c)\\b&b^3&b^4-1\\1&(b^2+c^2+cb)&(c^2+b^2)(c+b)\end{vmatrix}=0$$
Since $$a,b,c$$ are distinct.
$$\begin{vmatrix}0&a+c+b &(a^2+c^2+ac)+b^2+b(a+c)\\b&b^3&b^4-1\\1&(b^2+c^2+cb)&(c^2+b^2)(c+b)\end{vmatrix}=0$$
Doing Row operation $$R_2 \to R_2-bR_3$$
$$\begin{vmatrix}0&a+c+b &(a^2+c^2+ac)+b^2+b(a+c)\\0&-bc^2-cb^2&-bc^3-c^2b^2-b^3c-1\\1&(b^2+c^2+cb)&(c^2+b^2)(c+b)\end{vmatrix}=0$$
Doing Row operation $$R_2 \to R_2+cbR_1$$
$$\begin{vmatrix}0&a+c+b &(a^2+c^2+ac)+b^2+b(a+c)\\0&abc&abc(a+b+c)-1\\1&(b^2+c^2+cb)&(c^2+b^2)(c+b)\end{vmatrix}=0$$
Expanding Determinant, w eget
$$abc(a+b+c)^2-(a+b+c)-abc(a^2+b^2+c^2)-abc(ab+bc+ac)=0$$
$$\Rightarrow abc(ab+bc+ac)=abc((a+b+c)^2-a^2-b^2-c^2)-(a+b+c)$$
$$\Rightarrow abc(ab+bc+ca)=abc(2(ab+bc+ac))-(a+b+c)$$
$$\Rightarrow abc(ab+bc+ac)=a+b+c$$
Hence, option A is correct.