Self Studies

Determinants Test - 20

Result Self Studies

Determinants Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of the determinant $$\begin{vmatrix}a & b & 0\\ 0 & a & b\\ b & 0 &a \end{vmatrix}$$ is equal to
    Solution
    $$\begin{vmatrix} a & b & 0 \\ 0 & a & b \\ b & 0 & a \end{vmatrix}=a\left( { a }^{ 2 }-0 \right) -b\left( 0-{ b }^{ 2 } \right) +0={ a }^{ 3 }+{ b }^{ 3 }$$
  • Question 2
    1 / -0
    If $$A$$ is any skew-symmetric matrix of odd order then $$\left| A \right| $$ equals
    Solution
    if $$A$$ is skew symmetric matrix 
    then $$A=-A^T$$
    Therefore, $$|A|=-|A^T|=-|A|$$
    $$\Rightarrow 2|A|=0$$
    $$\Rightarrow|A|=0$$

    Ans: B
  • Question 3
    1 / -0
    If $$\begin{vmatrix} 6i & -3i & 1\\ 4 & 3i & -1 \\ 20 & 3 & i\end{vmatrix}=x+iy$$, then
    Solution
    $$\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix}=x+iy$$
    $$ \Rightarrow 6i\left( 3{ i }^{ 2 }+3 \right) +3i\left( 4i+20 \right) +1\left( 12-60i \right) =x+iy$$ $$\Rightarrow 0=x+iy$$
    Therefore, $$x=y=0$$

    Ans: D
  • Question 4
    1 / -0
    If $$\begin{vmatrix} x & y\\ 4 & 2 \end{vmatrix}=7$$ and $$\begin{vmatrix} 2 & 3\\ y & x \end{vmatrix}=4$$ then
    Solution
    $$\begin{vmatrix} x & y\\ 4 & 2 \end{vmatrix}=7$$
    $$\Rightarrow 2x-4y=7$$
    $$\begin{vmatrix} 2 & 3\\ y & x \end{vmatrix}=4$$ 
    $$\Rightarrow 2x-3y=4$$
    Therefore, $$x=-5/2,y=-3$$

    Ans: B
  • Question 5
    1 / -0
    If $$\begin{vmatrix}a & -b & -c\\-a & b & -c \\ -a & -b & -c\end{vmatrix}+\lambda abc=0$$, then $$\lambda$$ is equal to
    Solution
    $$\begin{vmatrix} a & -b & -c \\ -a & b & -c \\ -a & -b & -c \end{vmatrix}+\lambda abc=0$$

    Substitute $$a=b=c=1$$

    $$\begin{vmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & -1 \end{vmatrix}+\lambda =0$$

    $$(-2-2)+\lambda=0$$

    $$\Rightarrow \lambda =4$$


  • Question 6
    1 / -0
    The cofactors of elements in second row of the determinant $$\begin{vmatrix} 2 & -1 & 4 \\ 4 & 2 & -3 \\1 & 1 & 2 \end{vmatrix}$$ are
    Solution
    $$\begin{vmatrix} 2 & -1 & 4 \\ 4 & 2 & -3 \\ 1 & 1 & 2 \end{vmatrix}\\ { C }_{ 21 }=-\begin{vmatrix} -1 & 4 \\ 1 & 2 \end{vmatrix}=6\\ { C }_{ 22 }=\begin{vmatrix} 2 & 4 \\ 1 & 2 \end{vmatrix}=0\\ { C }_{ 23 }=-\begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix}=-3$$
  • Question 7
    1 / -0
    A set of points which do not lie on the same line are called as
    Solution
    A set of points which do not lie on the same line are called as non collinear points

  • Question 8
    1 / -0
    $$A$$ and $$B$$ are two points and $$C$$ is any point collinear with $$A$$ and $$B$$. IF $$AB=10$$, $$BC=5$$, then $$AC$$ is equal to:
    Solution
    Since $$C$$ is collinear with $$A$$ and $$B, C$$ lies either
    (i) to the left of point B or
    (ii) to the right of point B
    $$\therefore$$ In case (i) $$AC=AB-BC=10-5=5$$
    In case (ii) $$AC=AB+BC=10+5=15$$
  • Question 9
    1 / -0
    If $$A=\begin{bmatrix} 3 & -5 \\ -1 & 0 \end{bmatrix}$$, then adj. $$A$$ is equal to
    Solution
    co-factor of $$A_{11}=0$$; co-factor of $$A_{12}=5$$;  co-factor of $$A_{21}=1$$; co-factor of $$A_{22}=3$$
    $$adjA=\begin{bmatrix} 0 & 5 \\ 1 & 3 \end{bmatrix}$$

    Ans: C
  • Question 10
    1 / -0
    The value of the determinant $$\begin{vmatrix} 1 & 2 & 3\\ 3 & 5 & 7\\ 8 & 14 & 20\end{vmatrix}$$ is equal to
    Solution
    The value of the determinant is $$\begin{vmatrix} 1 & 2 & 3 \\ 3 & 5 & 7 \\ 8 & 14 & 20 \end{vmatrix}\\ =1\left( 100-98 \right) -2\left( 60-56 \right)  +3\left( 42-40 \right)$$
                                                          $$ =2-8+6=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now