Self Studies

Determinants Test - 22

Result Self Studies

Determinants Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If two rows of a determinant are identical, then what is the value of the determinant ?
    Solution
    Let determinant of this matrix is $$x$$, if we interchange the two identical rows of the matrix then by property the determinant of the new matrix is $$-x$$, but overall the matrix will be same as we have interchanged only the two identical rows.
    So, $$x=-x$$, we have $$x=0$$ .
    Hence, the determinant is zero.
  • Question 2
    1 / -0
    The value of k for which $$kx+3y-k+3=0$$ and $$12x+ky=k$$, have infinite solutions, is?
    Solution
    For infinite many solution $$\displaystyle\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}$$
    $$\Rightarrow \displaystyle\dfrac{k}{12}=\dfrac{3}{k}=\dfrac{-(k-3)}{-k}, \dfrac{3}{k}=\dfrac{(k-3)}{k}$$
    $$k^2=36$$               $$k-6=0$$
    $$k=\pm 6$$              $$k=6$$.
  • Question 3
    1 / -0
    For positive numbers $$x, y$$ and $$z$$ the numerical value of the determinant $$\begin{vmatrix} 1 & \log_x y & \log_x z \\ \log_y x & 1 & \log_y z \\ \log_z x & \log_z y & 1 \end{vmatrix}$$ is
    Solution
    Let $$D=\begin{vmatrix} 1 & \log_x y & \log_x z \\ \log_y x & 1 & \log_y z \\ \log_z x & \log_z y & 1 \end{vmatrix}$$

    $$=1(1\times 1-\log_yz\times \log_zy)-\log_xy(\log_yx\times 1-\log_zx\times \log_yz)+\log_xz(\log_yx\times \log_zy-1\times \log_zx)$$

    Since, $$\log_ab=\dfrac{\log a}{\log b}$$
    So simplifying above further we get
    $$\log_yz\times \log_zy=\dfrac{\log z}{\log y}\times \dfrac{\log y}{\log z}=1$$

    $$\Rightarrow D=1(1-1)-\log_xy(\log_yx-\log_yx)+\log_xz(\log_zx-\log_zx)$$
    $$\Rightarrow D=0$$
  • Question 4
    1 / -0
    The number of line segments possible with three collinear points is ________.
    Solution
    Let three collinear points be $$ A , B , C$$
    They can represent three line segments namely, $$AB, BC, AC$$.
    Thus namely $$3$$ line segments are possible with three collinear points.
  • Question 5
    1 / -0
    If any two adjacent rows or columns of a determinant are interchanged in position, the value of the determinant :
    Solution
    If two rows or columns are interchanged 
    then the value of determinant changes its sign
    $$A=\begin{vmatrix} a & b \\ c & d \end{vmatrix}$$
    Interchanging column
    $$B=\begin{vmatrix} b & a \\ d & c \end{vmatrix}\\ A=-B$$
    Similarly, interchanging rows will give
    $$C=\begin{vmatrix} c & d \\ a & b \end{vmatrix}\\ A=-C$$
    Hence, C is correct.
  • Question 6
    1 / -0
    If $$a, b, c$$ are non-zero and different from $$1$$, then the value of $$\begin{vmatrix}\log_a 1 & \log_a b & \log_ac\\ \log_a \left( \dfrac{1}{b} \right ) & \log_b 1 &\log_a \left( \dfrac{1}{c} \right ) \\ \log_a \left( \dfrac{1}{c}\right ) & \log_a c & \log_c 1\end{vmatrix}$$ is
    Solution
    $$\Delta =\left| \begin{matrix} \log _{ a }{ 1 }  & \log _{ a }{ b }  & \log _{ a }{ c }  \\ \log _{ a }{ \dfrac { 1 }{ b }  }  & \log _{ b }{ 1 }  & \log _{ a }{ \dfrac { 1 }{ c }  }  \\ \log _{ a }{ \dfrac { 1 }{ c }  }  & \log _{ a }{ c }  & \log _{ c }{ 1 }  \end{matrix} \right| \\ \Rightarrow \Delta =\left| \begin{matrix} 0 & \log _{ a }{ b }  & \log _{ a }{ c }  \\ -\log _{ a }{ b }  & 0 & -\log _{ a }{ c }  \\ -\log _{ a }{ c }  & \log _{ a }{ c }  & 0 \end{matrix} \right| \\ \Rightarrow \Delta =0-\log _{ a }{ b } \{ 0-{ (\log _{ a }{ c) }  }^{ 2 }\} +\log _{ a }{ c } \{ -\log _{ a }{ b } \log _{ a }{ c } -0\} \\ \Rightarrow \Delta =\log _{ a }{ b } { (\log _{ a }{ c) }  }^{ 2 }-\log _{ a }{ b } { (\log _{ a }{ c) }  }^{ 2 }=0$$
    So, option A is correct.
  • Question 7
    1 / -0
    The points (2, -3), (4,3) and (5, k/2) are on the same straight line. The value(s) of k is (are):
    Solution
    Given (2, -3), (4, 3) and (5, $$\cfrac{k}{2}$$) are on same straight line.
    $$\therefore \cfrac { 3-(-3) }{ 4-2 } =\cfrac { \cfrac { k }{ 2 } -3 }{ 5-4 } \Longrightarrow \cfrac { 6 }{ 2 } =\cfrac { \cfrac { k }{ 2 } -3 }{ 1 } \Longrightarrow 3=\cfrac { k }{ 2 } -3\\ \therefore k=12$$
  • Question 8
    1 / -0
     Let a be the  square  matrix  of  order  2 such  that $$A^2 - 4A + 4I  =0$$ where  I is an  identify  matrix  of order  2. .If$$ B = A ^5 - 4A^4 + 6 A^3 +  4A^2 + A $$ then  Det (B)  is equal to
    Solution
    $$A^2 - 4A + 4I = O \Rightarrow ( A- 2 I)^2 = O  \Rightarrow A = 2 I$$
    $$ B = A (A^4 \, + \, 4A^3\,  + \, 6A^2 \, + \, 4A +I) = A(A \, + \, I)^4 = 2I (3I)^4=162 I$$
    det$$(B)  = (162)^2$$
  • Question 9
    1 / -0
    If $$P=\begin{bmatrix} 1 & c & 3\\ 1 & 3 & 3\\ 2 & 4 & 4\end{bmatrix}$$ is the adjoint of a $$3\times 3$$ matrix Q and det.(Q)$$=4$$, then c is equal to.
    Solution
    P$$=$$adj. Q
    $$\Rightarrow |P|=|adj. Q|=|Q|^2$$
    $$\therefore |P|=(4)^2\Rightarrow |P|=16$$
    $$\Rightarrow \begin{vmatrix} 1 & c & 3\\ 1 & 3 & 3\\ 2 & 4 & 4\end{vmatrix}=16$$
    $$\Rightarrow 1(0)-c(-2)+3(-2)=16\Rightarrow 2c=22$$
    $$\Rightarrow c=11$$.
  • Question 10
    1 / -0
    If $$A$$ is a skew symmetric matrix, then $$\left| A \right| $$ is
    Solution
    SINCE THE SKEW SYMMETRIC MATRIX CONSIST OF ELEMENTS OF OPPOSITE SIGN AT OPPOSITE SIDE OF MATRIX DIAGONAL WITH ALL THE DIAGONAL ELEMENTS AS ZERO THEREFORE THE DETERMINANT OF SKEW SYMMETRIC MATRIX IS ZERO.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now