Self Studies

Determinants Te...

TIME LEFT -
  • Question 1
    1 / -0

    $$\left| \begin{matrix} 1+i & 1-i & i \\ 1+i & i & 1+i \\ i & 1+i & 1-i \end{matrix} \right| $$ (where $$i=\sqrt {-1}$$) equals.

  • Question 2
    1 / -0

    If $$\displaystyle{\left| {_2^{4\,}\,\,_1^1} \right|^2} = \left| {_1^3\,\,_x^2} \right| - \left| {_{ - 2}^x\,\,_1^3} \right|,$$ then $$x$$=

  • Question 3
    1 / -0

    `If $$(8,1),(k,-4),(2,-5)$$ are collinaer, then $$k=$$

  • Question 4
    1 / -0

    If $$A=\left[ \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right] $$ then determinant of $$[A]$$ is

  • Question 5
    1 / -0

    $$\left| \begin{matrix} 1& a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{matrix} \right| =$$

  • Question 6
    1 / -0

    If the points $$(a, 1), (2, -1)$$ and $$\left(\dfrac{1}{2}, 2\right)$$ are collinear, then $$a$$ is equal to:

  • Question 7
    1 / -0

    If $$A=\begin{bmatrix} 5 & 1 \\ 2 & 3 \end{bmatrix}$$, the determinant of matrix $$A$$ is

  • Question 8
    1 / -0

    Find the determinant:
    $$\begin{vmatrix} 1 & 2 & 1 \\ 2 & 2 & 2 \\ 3 & 1 & 4 \end{vmatrix}$$

  • Question 9
    1 / -0

    What is the value of the determinant
    $$\begin{vmatrix}  1!& 2! &  3!\\ 2! & 3! & 4! \\  3!&  4!&  5!\end{vmatrix}$$$$?$$

  • Question 10
    1 / -0

    lf $$\mathrm{A}=\left[\begin{array}{lll}
    1 & 5 & -6\\
    -8 & 0 & 4\\
    3 & -7 & 2
    \end{array}\right]$$, then the cofactor of -7=...... 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now