Self Studies

Determinants Test - 24

Result Self Studies

Determinants Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\left| \begin{matrix} 1+i & 1-i & i \\ 1+i & i & 1+i \\ i & 1+i & 1-i \end{matrix} \right| $$ (where $$i=\sqrt {-1}$$) equals.
    Solution
    $${ \begin{vmatrix} 1+i & 1-i & i \\ 1+i & i & 1+i \\ i & 1+i & 1-i \end{vmatrix}}$$ = $$(1+i)[i(1-i) - (1+i)^{2}] - (1+i)[(1-i)^{2} - i(1+i)] + i[(1-i)(1+i) - i^{2}]$$
                 =$$(1+i)[i-i^{2}-1-i^{2}-2i] - (1+i)[1+i^{2}-2i-i-i^{2}] + i[1-i^{2}-i^{2}]$$
                 =$$(1+i)(1-i) - (1+i)(1-3i) + 3i$$
                 =$$1-i^{2}-1(1-3i)-i(1-3i)+3i$$
                 =$$1+1-1+3i-i+3i^{2}+3i$$
                 =$$1-3+6i$$
                 =$$5i-2$$
  • Question 2
    1 / -0
    If $$\displaystyle{\left| {_2^{4\,}\,\,_1^1} \right|^2} = \left| {_1^3\,\,_x^2} \right| - \left| {_{ - 2}^x\,\,_1^3} \right|,$$ then $$x$$=
    Solution
    $${ \begin{vmatrix} 4 & 1 \\ 2 & 1 \end{vmatrix} }^{ 2 }=\begin{vmatrix} 3 & 2 \\ 1 & x \end{vmatrix}-\begin{vmatrix} x & 3 \\ -2 & 1 \end{vmatrix}$$
    $$(4-2)^2=(3x-2)-(x+6)$$
    $$4=(3x-x)-8$$
    $$12=2x$$
    $$\Rightarrow x=6$$
  • Question 3
    1 / -0
    `If $$(8,1),(k,-4),(2,-5)$$ are collinaer, then $$k=$$
    Solution
    Let the given point be $$A(8,1),B(K, - 4),C(2, - 5)$$
    if the above point are collinear,
    they will lie on same line 
    i.e. they will not form triangle,
    Area of $$\Delta$$ABC$$=0$$
    $$ \Rightarrow \dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right] = 0$$
    Here,
    $$\begin{array}{l} { x_{ 1 } }=8,{ y_{ 1 } }=1 \\ { x_{ 2 } }=k,{ y_{ 2 } }=-4 \\ { x_{ 3 } }=2,{ y_{ 3 } }=-5 \end{array}$$
    putting value,
    $$\begin{array}{l} \Rightarrow \dfrac { 1 }{ 2 } \left[ { 8\left( { -4+5 } \right) +k\left( { -5-1 } \right) +2\left( { 1-4 } \right)  } \right] =0 \\ \Rightarrow 8\left( { -4+5 } \right) +k\left( { -5-1 } \right) +2\left( { 1+4 } \right) =0\times 2 \\ \Rightarrow -32+40-5k-k+2+8=0 \\ \Rightarrow 8+10-6k=0 \\ \Rightarrow -6k=-18 \\ \Rightarrow 6k=18 \\ \Rightarrow k=\dfrac { { 18 } }{ 6 }  \\ \Rightarrow k=3 \end{array}$$
    hence,we get 
    $$k=3$$
    so, option $$C$$ is correct.
  • Question 4
    1 / -0
    If $$A=\left[ \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right] $$ then determinant of $$[A]$$ is
    Solution
    Determinants of a $$2\times 2$$ matrix is given by:

    If $$A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

    $$Det(A)=ad-bc$$

    Hence using this above property:

    If $$A=\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$, then

    $$Det(A)=0\times0-1\times (-1)=0+1=1$$
  • Question 5
    1 / -0
    $$\left| \begin{matrix} 1& a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{matrix} \right| =$$
    Solution
    $$\begin{array}{l} Let\, \, the\, \, given\, \quad determinant\, be\, \Delta .Then \\ \Delta =\left| { \begin{array} { *{ 20 }{ c } }1 & a & { { a^{ 2 } } } \\ 1 & b & { { b^{ 2 } } } \\ 1 & c & { { c^{ 2 } } } \end{array} } \right|  \\ =\left| { \begin{array} { *{ 20 }{ c } }1 & a & { { a^{ 2 } } } \\ 0 & { b-a } & { { b^{ 2 } }-{ a^{ 2 } } } \\ 0 & { c-a } & { { c^{ 2 } }-{ a^{ 2 } } } \end{array} } \right| \, \, \left[ { applying\, \, { R_{ 2 } }\to \left( { { R_{ 2 } }-{ R_{ 1 } } } \right) and\, { R_{ 3 } }\to \left( { { R_{ 3 } }-{ R_{ 1 } } } \right)  } \right]  \\ =\left( { b-a } \right) \left( { c-a } \right) .\left| { \begin{array} { *{ 20 }{ c } }1 & a & { { a^{ 2 } } } \\ 0 & 1 & { b-a } \\ 0 & 1 & { c+a } \end{array} } \right|  \\ \left[ { taking\, \, \left( { b-a } \right) common\, \, from\, \, { R_{ 2 } }\, \, and\, \, \left( { c-a } \right) common\, \, from\, \, { R_{ 3 } } } \right]  \\ =\left( { b-a } \right) \left( { c-a } \right) \times 1.\left| { \begin{array} { *{ 20 }{ c } }1 & { b+a } \\ 1 & { c+a } \end{array} } \right| \, \, \left[ { anded\, \, by\, \, { C_{ 1 } } } \right]  \\ =\left( { b-a } \right) \left( { c-a } \right) \left\{ { \left( { c+a } \right) -\left( { b+a } \right)  } \right\}  \\ =\left( { b-a } \right) \left( { c-a } \right) \left( { c-b } \right) =\left( { a-b } \right) \left( { b-c } \right) \left( { c-a } \right) . \\ Hence, \\ \Delta =\left( { a-b } \right) \left( { b-c } \right) \left( { c-a } \right) . \end{array}$$
    So, option $$A$$ is correct answer.
  • Question 6
    1 / -0
    If the points $$(a, 1), (2, -1)$$ and $$\left(\dfrac{1}{2}, 2\right)$$ are collinear, then $$a$$ is equal to:
    Solution
    Slope of $$AB=$$ slope of $$BC$$
    $$ \Rightarrow \dfrac{{ - 1 - 1}}{{2 - a}} = \dfrac{{2 - \left( { - 1} \right)}}{{\dfrac{1}{2} - 2}}$$
    $$ \Rightarrow \dfrac{{ - 2}}{{2 - a}} = \dfrac{{3 \times 2}}{{ - 3}}$$
    $$ \Rightarrow 6 = 12 - 6a$$
    $$ \Rightarrow 6a = 6$$
    $$a=1$$

    Hence, option $$A$$ is correct answer.
  • Question 7
    1 / -0
    If $$A=\begin{bmatrix} 5 & 1 \\ 2 & 3 \end{bmatrix}$$, the determinant of matrix $$A$$ is
    Solution
    Determinants of a $$2\times 2$$ matrix is given by:

    If $$A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

    $$Det(A)=ad-bc$$

    Hence using this above property:

    If $$A=\begin{bmatrix} 5 & 1 \\ 2 & 3 \end{bmatrix}$$, then

    $$Det(A)=5\times3-1\times 2=15-2=13$$
  • Question 8
    1 / -0
    Find the determinant:
    $$\begin{vmatrix} 1 & 2 & 1 \\ 2 & 2 & 2 \\ 3 & 1 & 4 \end{vmatrix}$$
    Solution
    $$\begin{array}{l} Let\, \, the\, \, er\min  ant\, \, be\, \Delta  \\ Now, \\ \Delta =\left| { \begin{array} { *{ 20 }{ c } }1 & 2 & 1 \\ 2 & 2 & 2 \\ 3 & 1 & 4 \end{array} } \right|  \\ \Delta =1\left| { \begin{array} { *{ 20 }{ c } }2 & 2 \\ 1 & 4 \end{array} } \right| -2\left| { \begin{array} { *{ 20 }{ c } }2 & 2 \\ 3 & 4 \end{array} } \right| +1\left| { \begin{array} { *{ 20 }{ c } }2 & 2 \\ 3 & 1 \end{array} } \right|  \\ \Delta =1\left( { 8-2 } \right) -2\left( { 8-6 } \right) +1\left( { 2-6 } \right)  \\ \Delta =6-4-4 \\ \Delta =-2 \\ Hence, \\ option\, \, A\, \, is\, \, correct\, \, answer. \end{array}$$
  • Question 9
    1 / -0
    What is the value of the determinant
    $$\begin{vmatrix}  1!& 2! &  3!\\ 2! & 3! & 4! \\  3!&  4!&  5!\end{vmatrix}$$$$?$$
    Solution
    Given,

    $$\begin{pmatrix}1!&2!&3!\\ 2!&3!&4!\\ 3!&4!&5!\end{pmatrix}$$

    $$=1!\cdot \det \begin{pmatrix}3!&4!\\ 4!&5!\end{pmatrix}-2!\cdot \det \begin{pmatrix}2!&4!\\ 3!&5!\end{pmatrix}+3!\cdot \det \begin{pmatrix}2!&3!\\ 3!&4!\end{pmatrix}$$

    $$=1!\cdot \:144-2!\cdot \:96+3!\cdot \:12$$

    $$=144-192+72$$

    $$=24$$

  • Question 10
    1 / -0
    lf $$\mathrm{A}=\left[\begin{array}{lll}
    1 & 5 & -6\\
    -8 & 0 & 4\\
    3 & -7 & 2
    \end{array}\right]$$, then the cofactor of -7=...... 

    Solution
    By property of cofactor of matrix,
    $$A=\begin{bmatrix}
    1 & 5 & -6\\
    -8 & 0 & 4\\
    3 & -7 & 2
    \end{bmatrix}$$
    minor of $$-7=\begin{vmatrix}
    1 & -6\\
    -8 & 4
    \end{vmatrix}=4-48=-44$$
    So, cofactor of (-7)=minor of $$(-7) \times (-1)^{3+2}=-[minor \;of \; (-7)]$$
    $$=-(-44)$$
    $$=44$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now