Self Studies

Determinants Te...

TIME LEFT -
  • Question 1
    1 / -0

    If $$A+B+C= \pi$$, then $$ \displaystyle \left| \begin{matrix} \tan { \left( A+B+C \right)  }  & \tan { B }  & \tan { C }  \\ \tan { (A+C) }  & 0 & \tan { A }  \\ \tan { (A+B) }  & -\tan { A }  & 0 \end{matrix} \right| $$ is equal to

  • Question 2
    1 / -0

    $$I\mathrm{f}\mathrm{A}=\left[\begin{array}{ll}
    1 & 3\\
    2 & 1
    \end{array}\right]$$, then the determinant $$\mathrm{A}^{2}-2\mathrm{A}$$:

  • Question 3
    1 / -0

    $$\left[\begin{array}{llll}
    \mathrm{c}\mathrm{o}\mathrm{s}\alpha+\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{n}\alpha & \mathrm{c}\mathrm{o}\mathrm{s}\beta+\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{n}\beta\\
    \mathrm{s}\mathrm{i}\mathrm{n}\beta+\mathrm{i}\mathrm{c}\mathrm{o}\mathrm{s}\beta\ & \mathrm{s}\mathrm{i}\mathrm{n}\alpha+\mathrm{i}\mathrm{c}\mathrm{o}\mathrm{s}\alpha &
    \end{array}\right]$$ is

  • Question 4
    1 / -0

    Adj $$\left ( Adj\begin{bmatrix}
    2 &-3 \\
    4& 6
    \end{bmatrix} \right )=$$ 

  • Question 5
    1 / -0

    lf $$\left|\begin{array}{lll}
    a+x & a-x & a-x\\
    a-x & a+x & a-x\\
    a-x & a-x & a+x
    \end{array}\right|=0$$ then the non-zero value of x=............ 

  • Question 6
    1 / -0

    A= $$\begin{bmatrix}
    3 & 0 & 0\\
    0& 3 & 0\\
    0& 0 & 3
    \end{bmatrix}$$ ,then Adj ( A)

  • Question 7
    1 / -0

    lf $$\left|\begin{array}{lll}
    1 & 2 & x\\
    4 & -1 & 7\\
    2 & 4 & -6
    \end{array}\right|$$ is a singular matrix, then $$x$$ is equal to 

  • Question 8
    1 / -0

    If $$\mathrm{A}$$ is an unitary matrix then $$|A|$$ is equal to:

  • Question 9
    1 / -0

    A determinant of second order is made with the elements $$0$$ and $$1.$$ The number of determinants with non-negative values is:

  • Question 10
    1 / -0

    If $$A=\displaystyle \int_{1}^{sin\theta}\frac{t}{1+t^{2}}dt$$ and
    $$B=\displaystyle \int_{1}^{cosec\theta}\frac{1}{t(1+t^{2})}dt$$, then the value of determinant  $$\begin{vmatrix}
    A & A^{2}& B\\
    e^{A+B}& B^{2} &-1 \\
    1& A^{2}+B^{2} & -1
    \end{vmatrix}$$ is 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now