Self Studies

Determinants Test - 26

Result Self Studies

Determinants Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A+B+C= \pi$$, then $$ \displaystyle \left| \begin{matrix} \tan { \left( A+B+C \right)  }  & \tan { B }  & \tan { C }  \\ \tan { (A+C) }  & 0 & \tan { A }  \\ \tan { (A+B) }  & -\tan { A }  & 0 \end{matrix} \right| $$ is equal to
    Solution
    Let $$P=\begin{vmatrix}
    tan(A+B+C) & tan B & tan C\\
    tan (A+C) & 0 & tan A\\
    tan(A+B) & -tan A & 0
    \end{vmatrix}$$

    $$=\tan(A+B+C) \tan^2A-\tan B[-\tan A \tan (A+B)]+\tan C[-\tan A \tan(A+C)]$$

    $$=\tan (A+B+C) \tan^2 A+\tan A \tan B \tan(A+B)-\tan A \tan C \tan (A+C)$$

    Given $$A+B+C=\pi \implies A+B=\pi-C$$ or $$A+C=\pi-B$$

    $$\therefore P=\tan (\pi) \tan^2 A + \tan A \tan B(-\tan C) -\tan A \tan C(-\tan B)$$

    $$=0\cdot \tan^2 A - \tan A \tan B \tan C + \tan A \tan B \tan C$$

    $$=0$$
  • Question 2
    1 / -0
    $$I\mathrm{f}\mathrm{A}=\left[\begin{array}{ll}
    1 & 3\\
    2 & 1
    \end{array}\right]$$, then the determinant $$\mathrm{A}^{2}-2\mathrm{A}$$:
    Solution
    Given $$A=\begin{pmatrix}
    1 & 3\\
    2 & 1
    \end{pmatrix}$$
    $$A^2=\begin{bmatrix}
    1 & 3\\
    2 & 1
    \end{bmatrix}\begin{bmatrix}
    1 & 3\\
    2 & 1
    \end{bmatrix}$$
    By operation of matrix (4),
    $$A^2=\begin{bmatrix}
    7 & 6\\
    4 & 7
    \end{bmatrix}$$
    So,$$A^2-2A=\begin{bmatrix}
    7 & 6\\
    4 & 7
    \end{bmatrix}-2\begin{bmatrix}
    1 & 3\\
    2 & 1
    \end{bmatrix}=\begin{bmatrix}
    7 & 6\\
    4 & 7
    \end{bmatrix}-\begin{bmatrix}
    2 & 6\\
    4 & 2
    \end{bmatrix}$$
    $$=\begin{bmatrix}
    5 & 0\\
    0 & 5
    \end{bmatrix}$$
    So, $$det A^2-2A=|A^2-2A|=25$$
  • Question 3
    1 / -0
    $$\left[\begin{array}{llll}
    \mathrm{c}\mathrm{o}\mathrm{s}\alpha+\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{n}\alpha & \mathrm{c}\mathrm{o}\mathrm{s}\beta+\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{n}\beta\\
    \mathrm{s}\mathrm{i}\mathrm{n}\beta+\mathrm{i}\mathrm{c}\mathrm{o}\mathrm{s}\beta\ & \mathrm{s}\mathrm{i}\mathrm{n}\alpha+\mathrm{i}\mathrm{c}\mathrm{o}\mathrm{s}\alpha &
    \end{array}\right]$$ is
    Solution
    Let $$A=\begin{bmatrix}
    \cos \alpha+i \sin \alpha & \cos \beta + i sin \beta\\
     \sin \beta + i \cos \beta & \sin \alpha + i \cos \alpha
    \end{bmatrix}$$
    $$|A|=(\cos \alpha + i \sin \alpha)(\sin \alpha+ i \cos \alpha)-(\cos \beta + i \sin \beta)(\sin \beta + i \cos \beta)$$
    $$= \cos \alpha \sin \alpha + i - \cos \alpha \sin \alpha - [\cos \beta \sin \beta + i \sin \beta \cos \beta]$$
    $$=0$$
  • Question 4
    1 / -0
    Adj $$\left ( Adj\begin{bmatrix}
    2 &-3 \\
    4& 6
    \end{bmatrix} \right )=$$ 
    Solution
    Adjoint of matrix is given by
    $$\begin{bmatrix} M11 & -M12 \\ -M21 & M22 \end{bmatrix}$$
    Here $$M11 = 6$$
    $$M12 = 4$$
    $$M21 = -3$$
    $$M22 = 2$$
    So adjoint of the matrix is 
    $$\begin{bmatrix} 6& -4 \\ 3 & 2 \end{bmatrix}$$
    Again adjoint of this matrix is
    $$\begin{bmatrix} 2&-3\\ 4&6\end{bmatrix}$$
    Hence the answer is option A.
  • Question 5
    1 / -0
    lf $$\left|\begin{array}{lll}
    a+x & a-x & a-x\\
    a-x & a+x & a-x\\
    a-x & a-x & a+x
    \end{array}\right|=0$$ then the non-zero value of x=............ 
    Solution
    By operation of matrix (5),
    $$A=\begin{vmatrix}
    a+x & a-x & a-x\\
    a-x & a+x & a-x\\
    a-x & a-x & a+x
    \end{vmatrix}$$
    $$=(a+x)[(a+x)^2-(a-x)^2]-(a-x)[a^2-x^2-(a-x)^2]+(a-x)[(a-x)^2-(a^2-x^2)]$$
    $$=(a+x)(4ax)-(a-x)(a^2-x^2)+2(a-x)^3-(a-x)(a^2-x^2)$$
    $$=(a+x)(4ax)+2(a-x)[a^2+x^2-2ax-a^2+x^2]$$
    $$=(a+x)4ax+2(a-x)(2x^2-2ax)$$
    $$A=4a^2x+4ax^2+4ax^2-4a^2x-ax^3+4ax^2$$
    $$A=8ax^2+4ax^2-4x^3$$
    $$A=12ax^2-4x^3$$
    Given,$$ A= 12 ax^2-4x^3=0$$
    $$x^2(12 a-x)=0$$
    $$x=3a$$
  • Question 6
    1 / -0
    A= $$\begin{bmatrix}
    3 & 0 & 0\\
    0& 3 & 0\\
    0& 0 & 3
    \end{bmatrix}$$ ,then Adj ( A)
    Solution
    We have,  $$A=\begin{bmatrix}
    3 & 0 & 0\\
    0& 3 & 0\\
    0& 0 & 3
    \end{bmatrix}$$
    co-factor matrix of $$A$$ is,
    $$B = \begin{bmatrix}
    9 & 0 & 0\\
    0& 9 & 0\\
    0& 0 & 9
    \end{bmatrix}$$
    Thus
    $$\therefore $$ Adj(A)$$ =B^T=\begin{bmatrix}
    9 & 0 & 0\\
    0& 9 & 0\\
    0& 0 & 9
    \end{bmatrix}=3\begin{bmatrix}
    3 & 0 & 0\\
    0& 3 & 0\\
    0& 0 & 3
    \end{bmatrix}=3A$$
  • Question 7
    1 / -0
    lf $$\left|\begin{array}{lll}
    1 & 2 & x\\
    4 & -1 & 7\\
    2 & 4 & -6
    \end{array}\right|$$ is a singular matrix, then $$x$$ is equal to 
    Solution
    Given $$A=\begin{vmatrix}
    1 & 2 & x\\
    4 & -1 & 7\\
    2 & 4 & -6
    \end{vmatrix}$$ is a singular matrix

    So, $$detA=0$$

    $$\Rightarrow 1(6-28)-2(-24-14)+x(16+2)=0$$

    $$\Rightarrow -22+76+18x=0$$

    $$\Rightarrow 18x=-54$$

    $$\therefore x=-3$$
  • Question 8
    1 / -0
    If $$\mathrm{A}$$ is an unitary matrix then $$|A|$$ is equal to:
    Solution
    Since, A is a unitary matrix
    $$AA^{*}=I$$
    $$det A \times det A^{*}=det I$$      
    $$\Rightarrow (det A)^{2}=1$$      ($$\because |A|=|\overline{A^{T}}|$$)
    $$\Rightarrow det A=\pm 1$$
  • Question 9
    1 / -0
    A determinant of second order is made with the elements $$0$$ and $$1.$$ The number of determinants with non-negative values is:
    Solution
    There are only three determinants of second order with negative value, $$\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix},\begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix},\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix}$$
    Number of possible determinants with elements $$0$$ and $$1$$ are $${ 2 }^{ 4 }=16$$
    therefore, number of determinants with non-negative values is $$13.$$ 
  • Question 10
    1 / -0
    If $$A=\displaystyle \int_{1}^{sin\theta}\frac{t}{1+t^{2}}dt$$ and
    $$B=\displaystyle \int_{1}^{cosec\theta}\frac{1}{t(1+t^{2})}dt$$, then the value of determinant  $$\begin{vmatrix}
    A & A^{2}& B\\
    e^{A+B}& B^{2} &-1 \\
    1& A^{2}+B^{2} & -1
    \end{vmatrix}$$ is 

    Solution
    $$A=\displaystyle \int _{ 1 }^{ sin\theta  } \frac { t }{ 1+t^{ 2 } } dt$$
    $$\displaystyle B=\int _{ 1 }^{ cosec\theta  } \frac { 1 }{ t(1+t^{ 2 }) } dt$$

    Put $$\displaystyle z=\frac { 1 }{ t } \quad $$
    $$\displaystyle dz=-\frac { 1 }{ { t }^{ 2 } } dt$$

    $$\displaystyle B=\int _{ 1 }^{ \sin { \theta  }  } \frac { -z }{ (z^{ 2 }+1) } dz$$
    $$\displaystyle =\int _{ 1 }^{ \sin { \theta  }  } \frac { -t }{ (t^{ 2 }+1) } dt$$
    $$\Rightarrow B=-A$$

    Now, $$\begin{vmatrix} A & A^{ 2 } & B \\ e^{ A+B } & B^{ 2 } & -1 \\ 1 & A^{ 2 }+B^{ 2 } & -1 \end{vmatrix}$$

    $$=\begin{vmatrix} A & A^{ 2 } & -A \\ e^{ 0 } & A^{ 2 } & -1 \\ 1 & 2A^{ 2 } & -1 \end{vmatrix}$$

    $$=-\begin{vmatrix} A & A^{ 2 } & A \\ 1 & A^{ 2 } & 1 \\ 1 & 2A^{ 2 } & 1 \end{vmatrix}$$

    $$=0$$ (On expanding the determinant) 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now