Self Studies

Determinants Te...

TIME LEFT -
  • Question 1
    1 / -0

    $$\begin{vmatrix}
    1 &4 &20 \\
    1 & -2& 5\\
    1 &2x & 5x^{2}
    \end{vmatrix}=0$$ find x

  • Question 2
    1 / -0

    I. If A,B,C are angles of angle and $$\begin{vmatrix}
    1 & 1 & 1\\
    1+sinA& 1+sinB&1+sinC \\
    sinA+sin^{2}A & sinB+sin^{2}B & sinC+sin^{2}C
    \end{vmatrix}$$ =0  then triangle is isosceles
     II. lf $$a=1+2+4+---$$ upto $$\mathrm{n}$$ terms $$b=1+3+9+---$$ up to $$\mathrm{n}$$ terms $$c=1+5+25+----$$up to $$\mathrm{n}$$ terms  then $$\Delta \begin{vmatrix}
    a &2b &4c \\
    2& 2& 2\\
    2^{n} & 3^{n} & 5^{n}
    \end{vmatrix}$$ =0

  • Question 3
    1 / -0

    if $$a\neq 6 , b, c $$ satisfy $$\begin{vmatrix} a & 2b & 2c\\  3& b & c\\  4& a & b \end{vmatrix} = 0$$, then $$abc=$$

  • Question 4
    1 / -0

    $$\begin{vmatrix}
    1 & cos\alpha & cos\beta \\
    cos\alpha & 1 & cos\gamma \\
    cos\beta &cos\gamma & 1
    \end{vmatrix}$$ = $$\begin{vmatrix}
    0 & cos\alpha & cos\beta \\
    cos\alpha & 0 & cos\gamma \\
    cos\beta &cos\gamma & 0
    \end{vmatrix}$$ then 


  • Question 5
    1 / -0

    If $${A}=\begin{bmatrix}
    cos\theta & sin\theta\\
    -sin\theta & cos\theta
    \end{bmatrix}$$ then $$\displaystyle \lim_{n\rightarrow\infty}\frac{1}{n}|A^{n}|=$$

  • Question 6
    1 / -0

    $$|f(x)|={\begin{bmatrix}{}
    \mathrm{s}\mathrm{i}\mathrm{n}x & \mathrm{c}\mathrm{o}\mathrm{s}ecx & \mathrm{t}\mathrm{a}\mathrm{n}x\\
    \mathrm{s}\mathrm{e}\mathrm{c}x & x\mathrm{s}\mathrm{i}\mathrm{n}x & x\mathrm{t}\mathrm{a}\mathrm{n}x\\
    x^{2}-1 & \mathrm{c}\mathrm{o}\mathrm{s}x & x^{2}+1
    \end{bmatrix}}$$ then . $$.\displaystyle \int_{-a}^{a}|f(x)|d$$ equals 


  • Question 7
    1 / -0

    Adj $$\begin{bmatrix}
    1 & 0 & 2\\
    -1 & 1 & -2\\
    0& 2 & 1
    \end{bmatrix}$$= $$\begin{bmatrix}
    5 & a & -2\\
    1 & 1 & 0\\
    -2& -2 & b
    \end{bmatrix}$$ $$\Rightarrow [a\, \, \, \, \, b]=$$ 

  • Question 8
    1 / -0

    The value of $$\begin{vmatrix}
    -a^{2} &ab &ac \\
    ab& -b^{2} &bc \\
    ac & bc& -c^{2}
    \end{vmatrix}$$ is 

  • Question 9
    1 / -0

    If A =$$\begin{bmatrix}
    0 &1 & 2\\
    1& 2 & 3\\
    3 & 1 & 1
    \end{bmatrix}$$ then Adj (A) = 

  • Question 10
    1 / -0

    $$1\mathrm{f}\mathrm{A}=\left[\begin{array}{lll}
    1 & 5 & -6\\
    -8 & 0 & 4\\
    3 & -7 & 2
    \end{array}\right]$$ then the cofactors of the elements $$3,-7,2$$ are p,q,r respectively their ascending order is 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now