Co-factor of the matrix is given by, $$\begin{bmatrix} M11 & -M12 & M13 \\ -M21 & M22 & -M23 \\ M31 & -M32 & M33 \end{bmatrix}$$,
where$$ M11 $$ $$=$$ $$\begin{bmatrix} 1 & -2\\ 2 & 1 \end{bmatrix} = 1+4 = 5$$
$$M12$$ $$=$$ $$\begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix} = -1-0 = -1$$
$$M13$$ $$=$$ $$\begin{bmatrix} -1 & 1 \\ 0 & 2 \end{bmatrix} = -2-0 = -2$$
$$M21$$ $$=$$ $$\begin{bmatrix} 0 & 2 \\ 2 & 1 \end{bmatrix} = 0-4 = -4$$
$$M22$$ $$=$$ $$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = 1-0 = 1$$
$$M23$$ $$=$$ $$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = 2-0 = 2$$
$$M31$$ $$=$$ $$\begin{bmatrix} 0& 2 \\ 1 & -2 \end{bmatrix} = 0-2 = -2$$
$$M32$$ $$=$$ $$\begin{bmatrix} 1 & -2\\ -1 &-2 \end{bmatrix} = -2+2 = 0$$
$$M33 $$ $$=$$ $$\begin{bmatrix} 1 & 0\\ -1 & 1 \end{bmatrix} = 1-0= 1$$
Substituting all the values in the Co-factor of the matrix formula we get,
$$=$$ $$\begin{bmatrix} 5 & 1 & -2 \\ 4 & 1 & -2\\ -2 & 0 & 1\end{bmatrix}$$
The adjoint of the matrix is transpose of cofactor matrix.
$$\therefore$$ Adjoint of the matrix is
$$\begin{bmatrix} 5 & 4 & -2 \\ 1 & 1 & 0 \\ -2 & -2 & 1 \end{bmatrix}$$
Here$$ a =4$$ and$$ b =1$$
Hence, the answer is option C.