Self Studies

Determinants Test - 27

Result Self Studies

Determinants Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\begin{vmatrix}
    1 &4 &20 \\
    1 & -2& 5\\
    1 &2x & 5x^{2}
    \end{vmatrix}=0$$ find x
    Solution
    $$\begin{vmatrix}
    1 & 4 & 20\\
    1 & -2 & 5\\
    1 & 2x & 5x^2
    \end{vmatrix}=0$$
    $$r_1 \rightarrow r_1-r_2$$ and $$r_3\rightarrow r_3-r_2$$
    $$\begin{vmatrix}
    0 & 6 & 15\\
    1 &  -2 & 5\\
    0 & 2x+2 & 5x^2-5
    \end{vmatrix}$$
    $$=-(6(5x^2-5)-15(2x+2))$$
    $$=-(30x^2-30-30x-30)$$
    $$=30(-x^2+x+2)$$
    So, $$x^2-x-2=0$$
    $$x=-1,2$$

  • Question 2
    1 / -0
    I. If A,B,C are angles of angle and $$\begin{vmatrix}
    1 & 1 & 1\\
    1+sinA& 1+sinB&1+sinC \\
    sinA+sin^{2}A & sinB+sin^{2}B & sinC+sin^{2}C
    \end{vmatrix}$$ =0  then triangle is isosceles
     II. lf $$a=1+2+4+---$$ upto $$\mathrm{n}$$ terms $$b=1+3+9+---$$ up to $$\mathrm{n}$$ terms $$c=1+5+25+----$$up to $$\mathrm{n}$$ terms  then $$\Delta \begin{vmatrix}
    a &2b &4c \\
    2& 2& 2\\
    2^{n} & 3^{n} & 5^{n}
    \end{vmatrix}$$ =0
    Solution
    $$\begin{vmatrix} 1 & 1 & 1 \\ 1+sinA & 1+sinB & 1+sinC \\ sinA+sin^{ 2 }A & sinB+sin^{ 2 }B & sinC+sin^{ 2 }C \end{vmatrix}$$=0

    $$\Rightarrow \sin { B } \sin ^{ 2 }{ C } -\sin { C } \sin ^{ 2 }{ B+ } \sin { C } \sin ^{ 2 }{ A } -\sin { A } \sin ^{ 2 }{ C } +\sin { A } \sin ^{ 2 }{ B } -\sin { B } \sin ^{ 2 }{ A } =0$$

    $$\Rightarrow (\sin A-\sin B)(\sin B-\sin C)(\sin C-\sin A)=0$$

    $$\Rightarrow  (\sin A-\sin B)=0$$ or $$ (\sin B-\sin C)=0$$ or $$(\sin C-\sin A)=0$$
    $$\Rightarrow A=B$$ or $$B=C$$ or $$C=A$$ 

    $$a=1+2+4+---$$ upto $${ n }$$ terms
    $$\Rightarrow a={ 2 }^{ n }-1$$

    $$b=1+3+9+---$$ upto $$ { n }$$ terms
    $$\Rightarrow\displaystyle b=\dfrac{{3}^{n}-1}{2}$$

    $$c=1+5+25+----$$ upto $$ { n } $$ terms
    $$\Rightarrow\displaystyle c=b=\dfrac { { 5 }^{ n }-1 }{ 4 } $$

    $$\Delta =\begin{vmatrix} a & 2b & 4c \\ 2 & 2 & 2 \\ 2^{ n } & 3^{ n } & 5^{ n } \end{vmatrix}$$

    $$=\begin{vmatrix} 2^{ n }-1 & 3^{ n }-1 & 5^{ n }-1 \\ 2 & 2 & 2 \\ 2^{ n } & 3^{ n } & 5^{ n } \end{vmatrix}$$

    $$=\begin{vmatrix} 2^{ n } & 3^{ n } & 5^{ n } \\ 2 & 2 & 2 \\ 2^{ n } & 3^{ n } & 5^{ n } \end{vmatrix}+\begin{vmatrix} -1 & -1 & -1 \\ 2 & 2 & 2 \\ 2^{ n } & 3^{ n } & 5^{ n } \end{vmatrix}$$

    $$=0-2\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 2^{ n } & 3^{ n } & 5^{ n } \end{vmatrix}=0$$

  • Question 3
    1 / -0
    if $$a\neq 6 , b, c $$ satisfy $$\begin{vmatrix} a & 2b & 2c\\  3& b & c\\  4& a & b \end{vmatrix} = 0$$, then $$abc=$$
    Solution


    $${\textbf{Step -1: Given determinant is,}}$$

                        $${\text{Let,}}$$  $$A = \left| {\begin{array}{*{20}{c}}  a&{2b}&{2c} \\   3&b&c \\  4&a&b\end{array}} \right|$$

    $${\textbf{Step -2: Expand the determinant.}}$$

                      $$A = a\left( {{b^2} - ac} \right) - 2b\left( {3b - 4c} \right) + 2c\left( {3a - 4b} \right)$$

                      $$ \Rightarrow a\left( {{b^2} - ac} \right) - 2b\left( {3b - 4c} \right) + 2c\left( {3a - 4b} \right) = 0$$              $$\left( \mathbf{\because A = 0} \right)$$

                      $$ \Rightarrow a{b^2} - {a^2}c - 6{b^2} + 8bc + 6ac - 8bc = 0$$

                      $$ \Rightarrow a{b^2} - 6{b^2} = {a^2}c - 6ac$$

                      $$ \Rightarrow \left( {a - 6} \right){b^2} = ac\left( {a - 6} \right)$$

                      $$ \Rightarrow {b^2} = ac$$

                      $$ \Rightarrow {b^3} = abc$$     $$\left( {{\textbf{multiplying both side by b}}} \right)$$  

    $${\textbf{ Hence, abc = }}{{\textbf{b}}^\mathbf 3.}$$ $$\textbf{The correct option is C.}$$

  • Question 4
    1 / -0
    $$\begin{vmatrix}
    1 & cos\alpha & cos\beta \\
    cos\alpha & 1 & cos\gamma \\
    cos\beta &cos\gamma & 1
    \end{vmatrix}$$ = $$\begin{vmatrix}
    0 & cos\alpha & cos\beta \\
    cos\alpha & 0 & cos\gamma \\
    cos\beta &cos\gamma & 0
    \end{vmatrix}$$ then 


    Solution
    $$\begin{vmatrix} 1 & cos\alpha  & cos\beta  \\ cos\alpha  & 1 & cos\gamma  \\ cos\beta  & cos\gamma  & 1 \end{vmatrix}=\begin{vmatrix} 0 & cos\alpha  & cos\beta  \\ cos\alpha  & 0 & cos\gamma  \\ cos\beta  & cos\gamma  & 0 \end{vmatrix}$$

    $$ \Rightarrow 1-\cos ^{ 2 }{ \gamma - } \cos { \alpha  } (\cos { \alpha  } -\cos { \beta  } \cos { \gamma  } )+\cos { \beta  } (\cos { \alpha  } \cos { \gamma  } -\cos { \beta  } )=-cos\alpha (-\cos { \beta  } \cos { \gamma  } )+cos\beta (cos\alpha cos\gamma )$$

    $$ \Rightarrow 1-\cos ^{ 2 }{ \gamma - } \cos ^{ 2 }{ \alpha + } \cos { \alpha \cos { \beta \cos { \gamma  }  } + } \cos { \alpha \cos { \beta \cos { \gamma  }  } - } \cos ^{ 2 }{ \beta  } =\cos { \alpha \cos { \beta \cos { \gamma  }  } + } \cos { \alpha \cos { \beta \cos { \gamma  }  }  } $$

    $$ \Rightarrow \cos ^{ 2 }{ \alpha + } \cos ^{ 2 }{ \beta  } +\cos ^{ 2 }{ \gamma =1 } $$
  • Question 5
    1 / -0
    If $${A}=\begin{bmatrix}
    cos\theta & sin\theta\\
    -sin\theta & cos\theta
    \end{bmatrix}$$ then $$\displaystyle \lim_{n\rightarrow\infty}\frac{1}{n}|A^{n}|=$$
    Solution
    $$A=\begin{bmatrix} \cos { \theta  }  & \sin { \theta  }  \\ -\sin { \theta  }  & \cos { \theta  }  \end{bmatrix}$$

    $${ A }^{ n }=\begin{bmatrix} \cos { n\theta  }  & \sin { n\theta  }  \\ -\sin { n\theta  }  & \cos { n\theta  }  \end{bmatrix}$$

    $$\displaystyle \lim _{ n\rightarrow \infty  }{ \cfrac { 1 }{ n } \left| { A }^{ n } \right|  } =\displaystyle \lim _{ n\rightarrow \infty  }{ \cfrac { 1 }{ n } \begin{bmatrix} \cos { n\theta  }  & \sin { n\theta  }  \\ -\sin { n\theta  }  & \cos { n\theta  }  \end{bmatrix} } $$

    $$\Rightarrow \begin{bmatrix} \displaystyle \lim _{ n\rightarrow \infty  }{ \cfrac { 1 }{ n } \cos { n\theta  }  }  & \displaystyle \lim _{ n\rightarrow \infty  }{ \cfrac { 1 }{ n } \sin { n\theta  }  }  \\ -\sin { n\theta  }  & \cos { n\theta  }  \end{bmatrix}$$

    $$=\begin{bmatrix} 0 & 0 \\ -\sin { n\theta  }  & \cos { n\theta  }  \end{bmatrix}=0$$
    Option B
  • Question 6
    1 / -0
    $$|f(x)|={\begin{bmatrix}{}
    \mathrm{s}\mathrm{i}\mathrm{n}x & \mathrm{c}\mathrm{o}\mathrm{s}ecx & \mathrm{t}\mathrm{a}\mathrm{n}x\\
    \mathrm{s}\mathrm{e}\mathrm{c}x & x\mathrm{s}\mathrm{i}\mathrm{n}x & x\mathrm{t}\mathrm{a}\mathrm{n}x\\
    x^{2}-1 & \mathrm{c}\mathrm{o}\mathrm{s}x & x^{2}+1
    \end{bmatrix}}$$ then . $$.\displaystyle \int_{-a}^{a}|f(x)|d$$ equals 


    Solution
    $$|f(x)|=\begin{bmatrix} \sin { x }  & \csc { x }  & \tan { x }  \\ \sec { x }  & x\sin { x }  & x\tan { x }  \\ x^{ 2 }-1 & -\sin { x }  & x^{ 2 }+1 \end{bmatrix}$$

    $$\int _{ -a }^{ a }{ |f(x)|dx= } \begin{bmatrix} \int _{ -a }^{ a }{ \sin { x } dx }  & \int _{ -a }^{ a }{ \csc { x } dx }  & \int _{ -a }^{ a }{ \tan { x } dx }  \\ \int _{ -a }^{ a }{ \sec { x } dx }  & \int _{ -a }^{ a }{ x\sin { x } dx }  & \int _{ -a }^{ a }{ x\tan { x } dx }  \\ \int _{ -a }^{ a }{ (x^{ 2 }-1)dx }  & -\int _{ -a }^{ a }{ \sin { x } dx }  & \int _{ -a }^{ a }{ (x^{ 2 }+1)dx }  \end{bmatrix}$$


    $$\int _{ -a }^{ a }{ \sin  x } dx=0$$, since $$\sin x$$ is a odd function

    similarly $$\int _{ -a }^{ a }{ \csc  x } dx=0\, \,  and\, \, \int _{ -a }^{ a }{ \tan  x } dx=0 $$, since $$\csc x$$ and $$\tan x$$ are odd functions


    $$=\begin{bmatrix} 0 & 0 & 0 \\ \int _{ -a }^{ a }{ \sec { x } dx }  & \int _{ -a }^{ a }{ x\sin { x } dx }  & \int _{ -a }^{ a }{ x\tan { x } dx }  \\ \int _{ -a }^{ a }{ (x^{ 2 }-1)dx }  & -\int _{ -a }^{ a }{ \sin { x } dx }  & \int _{ -a }^{ a }{ (x^{ 2 }+1)dx }  \end{bmatrix}$$

    $$=0$$
  • Question 7
    1 / -0
    Adj $$\begin{bmatrix}
    1 & 0 & 2\\
    -1 & 1 & -2\\
    0& 2 & 1
    \end{bmatrix}$$= $$\begin{bmatrix}
    5 & a & -2\\
    1 & 1 & 0\\
    -2& -2 & b
    \end{bmatrix}$$ $$\Rightarrow [a\, \, \, \, \, b]=$$ 
    Solution
    Co-factor of the matrix is given by, 
    $$\begin{bmatrix} M11 & -M12 & M13 \\ -M21 & M22 & -M23 \\ M31 & -M32 & M33 \end{bmatrix}$$,
    where$$ M11 $$ $$=$$ $$\begin{bmatrix} 1 & -2\\ 2 & 1 \end{bmatrix} = 1+4 = 5$$
    $$M12$$ $$=$$ $$\begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix} = -1-0 = -1$$
    $$M13$$ $$=$$ $$\begin{bmatrix} -1 & 1 \\ 0 & 2 \end{bmatrix} = -2-0 = -2$$
    $$M21$$ $$=$$ $$\begin{bmatrix} 0 & 2 \\ 2 & 1 \end{bmatrix} = 0-4 = -4$$
    $$M22$$ $$=$$ $$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = 1-0 = 1$$
    $$M23$$ $$=$$ $$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = 2-0 = 2$$
    $$M31$$ $$=$$ $$\begin{bmatrix} 0& 2 \\ 1 & -2 \end{bmatrix} = 0-2 = -2$$
    $$M32$$ $$=$$ $$\begin{bmatrix} 1 & -2\\ -1 &-2 \end{bmatrix} = -2+2 = 0$$
    $$M33 $$ $$=$$ $$\begin{bmatrix} 1 & 0\\ -1 & 1 \end{bmatrix} = 1-0= 1$$
    Substituting all the values in the Co-factor of the matrix formula we get,
    $$=$$ $$\begin{bmatrix} 5 & 1 & -2 \\ 4 & 1 & -2\\ -2 & 0 & 1\end{bmatrix}$$
    The adjoint of the matrix is transpose of cofactor matrix.
    $$\therefore$$ Adjoint of the matrix is
    $$\begin{bmatrix} 5 & 4 & -2 \\ 1 & 1 & 0 \\ -2 & -2 & 1 \end{bmatrix}$$
    Here$$ a =4$$ and$$ b =1$$
    Hence, the answer is option C.
  • Question 8
    1 / -0
    The value of $$\begin{vmatrix}
    -a^{2} &ab &ac \\
    ab& -b^{2} &bc \\
    ac & bc& -c^{2}
    \end{vmatrix}$$ is 
    Solution
    The given matrix can be solved as further,
    $$=$$$$-a^2[b^2c^2-b^2c^2]-ab[-abc^2-abc^2]+ac[ab^2c+ab^2c]$$
    $$=$$$$a^2b^2c^2+a^2b^2c^2+a^2b^2c^2+a^2b^2c^2$$
    $$=$$$$2^2a^2b^2c^2$$
  • Question 9
    1 / -0
    If A =$$\begin{bmatrix}
    0 &1 & 2\\
    1& 2 & 3\\
    3 & 1 & 1
    \end{bmatrix}$$ then Adj (A) = 
    Solution
    Cofactor of the matrix is given by 
    $$\begin{bmatrix} M11 & -M12 & M13 \\ -M21 & M22 & -M23 \\ M31 & -M32 & M33 \end{bmatrix}$$
    where $$M11$$ = $$\begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} = 2-3 = -1$$
    $$M12$$ = $$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} = 1-9 = -8$$
    $$M13$$ = $$\begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix} = 1-6 = -5$$
    $$M21$$ = $$\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = 1-2 = -1$$
    $$M22$$= $$\begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix} = 0-6 = -6$$
    $$M23$$ = $$\begin{bmatrix} 0 & 1 \\ 3 & 1 \end{bmatrix} = 0-3 = -3$$
    $$M31$$ = $$\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} = 3-4 = -1$$
    $$M32$$ = $$\begin{bmatrix} 0 & 2\\ 1 & 3 \end{bmatrix} = 0-2 = -2$$
    $$M33$$ = $$\begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} = 0-1 = -1$$
    substituting all the values in the Cofactor of the matrix formula we get,
    $$\begin{bmatrix} -1 & 8 & -5 \\ 1& -6 & 3\\ -1 & 2 & -1\end{bmatrix}$$
    Hence the adjoint of the matrix is transpose of the cofactor of the given matrix
    $$\therefore $$ adjoint of the given matrix is
    $$\begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix}$$

    Hence the answer is option B.
  • Question 10
    1 / -0
    $$1\mathrm{f}\mathrm{A}=\left[\begin{array}{lll}
    1 & 5 & -6\\
    -8 & 0 & 4\\
    3 & -7 & 2
    \end{array}\right]$$ then the cofactors of the elements $$3,-7,2$$ are p,q,r respectively their ascending order is 
    Solution
    $$\displaystyle A= \begin{bmatrix} 1 & 5 & -6 \\ -8 & 0 & 4 \\ 3 & -7 & 2 \end{bmatrix}$$

    Cofactor of $$\displaystyle 3={ c }_{ 31 }=\begin{vmatrix} 5 & -6 \\ 0 & 4 \end{vmatrix}=5\times 4-0\left( -6 \right) =20=p$$

    Cofactor of $$\displaystyle -7={ c }_{ 32 }=-\begin{vmatrix} 1 & -6 \\ -8 & 4 \end{vmatrix}=-(1\times 4-\left( -8 \right) \left( -6 \right)) =-(4-48)=44=q$$

    Cofactor of $$\displaystyle 2={ c }_{ 33 }=\begin{vmatrix} 1 & 5 \\ -8 & 0 \end{vmatrix}=1\times 0-\left( -8 \right) \left( 5 \right) =40=r$$

    $$\therefore$$ In ascending order $$p,r,q$$   
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now