Self Studies

Determinants Te...

TIME LEFT -
  • Question 1
    1 / -0

    .Let $$\begin{vmatrix}
    x&2 & x\\
    x^{2}&x & 6\\
    x & x& 6
    \end{vmatrix}$$ =$$ax^{4}+bx^{3}+cx^{2}+dx+e$$ ,then the value of 5a + 4b + 3c + 2d + e is
    equal to 

  • Question 2
    1 / -0

    If $$f(x)=$$ $$\begin{vmatrix}
    \sin\, \, x &1 &0 \\
    1& 2\sin\, \, x& 1\\
    0& 1 & 2\sin\, \, x
    \end{vmatrix}$$ then $$\displaystyle \int _{-\frac{\pi }{2}}^{\frac{\pi }{2}} f\left ( x \right )$$ equals 

  • Question 3
    1 / -0

    If A= $$\begin{bmatrix}
    2 &-1 \\
    -1& 2
    \end{bmatrix}$$, then the general solution of $$sin \theta =\left | A^{2}-4A+3I \right |$$ is 

  • Question 4
    1 / -0

    Match the following elements of $$\begin{vmatrix}
    1 & -1 &0 \\
    0& 4 & 2\\
    3 & -4 & 6
    \end{vmatrix}$$ with their cofactors and choose the correct
    answer 
    Element                                                        Cofactor
    I. -1                                                                   a) -2
    II. 1                                                                   b) 32
    III. 3                                                                  c) 4
    IV. 6                                                                  d) 6
                                                                             e) -6

  • Question 5
    1 / -0

    $$\begin{vmatrix}
    1+i &1-i &1 \\
    1-i& i&1+i \\
    i & 1+i & 1-i
    \end{vmatrix}$$ is a 

  • Question 6
    1 / -0

    $$\mathrm{D}\mathrm{e}\mathrm{t} \left\{\begin{array}{lll}
    -2a & a+b & c+a\\
    b+a & -2b & b+c\\
    c+a & c+b & -2c
    \end{array}\right\}=$$ 

  • Question 7
    1 / -0

    The sum of infinite series $$\begin{vmatrix}
    1 &2 \\
    6 & 4
    \end{vmatrix}+\begin{vmatrix}
    \frac{1}{2} &2 \\
    2& 4
    \end{vmatrix}+\begin{vmatrix}
    \frac{1}{4} & 2\\
    \frac{2}{3}& 4
    \end{vmatrix}+$$ ....... is 

  • Question 8
    1 / -0

    lf $$f(x)=\left| \begin{matrix} \sec { x }  & \cos { x }  \\ \cos ^{ 2 }{ x }  & \cos ^{ 2 }{ x }  \end{matrix} \right| $$, then $$\displaystyle \int_{0}^{\pi/2}f(x)dx=$$

  • Question 9
    1 / -0

    If $$\begin{vmatrix}
    x & 2& 3\\
    2& 3 &x \\
    3& x &2
    \end{vmatrix}=\begin{vmatrix}
    1 &x &4 \\
    x&1 &4 \\
    4 & 1 & x
    \end{vmatrix}=\begin{vmatrix}
    0 & 5 &x \\
    5 & x & 0\\
    x & 0 & 5
    \end{vmatrix}=0$$ then the value x equals $$(x\epsilon R)$$ 

  • Question 10
    1 / -0

    .Let $$\Delta$$ $$(x)=$$$$\begin{vmatrix}
    x+a & x+b &x+a-c \\
    x+b & x+c &x-1 \\
    x+c & x+d &x-b+d
    \end{vmatrix}$$ and $$\displaystyle \int_{0}^{2}\Delta(x) dx =-16$$, where $$\mathrm{a}$$, b,c,d are in A.$$\mathrm{P}$$. then the common difference of the A.$$\mathrm{P}$$. is 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now