Self Studies

Determinants Test - 28

Result Self Studies

Determinants Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    .Let $$\begin{vmatrix}
    x&2 & x\\
    x^{2}&x & 6\\
    x & x& 6
    \end{vmatrix}$$ =$$ax^{4}+bx^{3}+cx^{2}+dx+e$$ ,then the value of 5a + 4b + 3c + 2d + e is
    equal to 

    Solution
    Put x=0
    $$\begin{vmatrix}0 &2  &0 \\  6&  0&0 \\  0& 0 &6 \end{vmatrix}=0=e$$

    Diff. the determinant w.r.t. x
    $$\begin{vmatrix}1 &0  &1 \\  x^{2}& x &6 \\  x& x &6\end{vmatrix}+\begin{vmatrix}x &2  &x \\  2x&1  &0 \\  x& x &6 \end{vmatrix}+\begin{vmatrix}x &2  &x \\  x^{2}&  x&6 \\  1& 1 &0 \end{vmatrix}$$

    Put  $$x=0$$
    $$0+0+12=12=d$$

    Diff. again w.r.t. x
    $$\begin{vmatrix}0 &0  &0 \\  x^{2}&  x&6 \\  x& x &6 \end{vmatrix}+\begin{vmatrix}1 &0  &1 \\  2x& 1 &0 \\  x& x &6\end{vmatrix}+\begin{vmatrix}1 &0  &1 \\  x^{2}& x &6 \\  1& 1 &0\end{vmatrix}+\begin{vmatrix}1 &0  &1 \\  2x& 1 &0 \\  x& x &6\end{vmatrix}+\begin{vmatrix}x &2  &x \\  2& 0 &0 \\  x& x &6\end{vmatrix}+\begin{vmatrix}x &2  &x \\  2x& 1 &0 \\  1& 1 &0\end{vmatrix}+\begin{vmatrix}1 &0  &1 \\  x^{2}& x &6 \\  1& 1 &0\end{vmatrix}+\begin{vmatrix}x &2  &x \\  2x& 1 &0 \\  1& 1 &0\end{vmatrix}+\begin{vmatrix}x &2  &x \\  x^{2}& x &6 \\  0& 0 &0\end{vmatrix}$$

    Put  $$ x=0$$
    $$C = -12\  \  Similarly\ \  a=1\ \,   b=-1   $$
    $$5-4-36+24=-11$$
  • Question 2
    1 / -0
    If $$f(x)=$$ $$\begin{vmatrix}
    \sin\, \, x &1 &0 \\
    1& 2\sin\, \, x& 1\\
    0& 1 & 2\sin\, \, x
    \end{vmatrix}$$ then $$\displaystyle \int _{-\frac{\pi }{2}}^{\frac{\pi }{2}} f\left ( x \right )$$ equals 

    Solution
    $$f(x)=\begin{vmatrix}
    \sin\, \, x &1 &0 \\
    1& 2\sin\, \, x& 1\\
    0& 1 & 2\sin\, \, x
    \end{vmatrix}$$
    Expanding along first column we get,
    $$f(x)=\sin x(4\sin^2x-1)-1(2\sin x-0)=4\sin^3x-3\sin x$$
    Clearly $$f(-x)=f(x)\Rightarrow$$ f is an odd function
    Hence $$\displaystyle \int _{-\frac{\pi }{2}}^{\frac{\pi }{2}} f\left ( x \right )=0$$
  • Question 3
    1 / -0
    If A= $$\begin{bmatrix}
    2 &-1 \\
    -1& 2
    \end{bmatrix}$$, then the general solution of $$sin \theta =\left | A^{2}-4A+3I \right |$$ is 
    Solution
    $$A=\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

    $${ A }^{ 2 }=\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}=\begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix}$$

    $${ A }^{ 2 }-4A+3I=\begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix}+\begin{bmatrix} -8 & -4 \\ -4 & -8 \end{bmatrix}+\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

    $$\Rightarrow |{ A }^{ 2 }-4A+3I|=0$$

    So,$$\sin  \theta =0$$
    Hence, the general solution is $$\theta =n\pi $$

  • Question 4
    1 / -0
    Match the following elements of $$\begin{vmatrix}
    1 & -1 &0 \\
    0& 4 & 2\\
    3 & -4 & 6
    \end{vmatrix}$$ with their cofactors and choose the correct
    answer 
    Element                                                        Cofactor
    I. -1                                                                   a) -2
    II. 1                                                                   b) 32
    III. 3                                                                  c) 4
    IV. 6                                                                  d) 6
                                                                             e) -6
    Solution
    $$\displaystyle \begin{vmatrix} 1 & -1 & 0 \\ 0 & 4 & 2 \\ 3 & -4 & 6 \end{vmatrix}$$
    (A) Cofactor of $$\displaystyle -1={ c }_{ 12 }=-\begin{vmatrix} 0 & 2 \\ 3 & 6 \end{vmatrix}=-\left( 0\times 6-2\times 3 \right) $$$$\displaystyle =-\left( 0-6 \right) =6$$

    (B) Cofactor of $$\displaystyle 1={ C }_{ 11 }=\begin{vmatrix} 4 & 2 \\ -4 & 6 \end{vmatrix}=\left( 4\times 6-\left( -4 \right) \times 2 \right) $$$$\displaystyle =24+8=32$$

    (C) Cofactor of $$\displaystyle 3={ c }_{ 31 }=\begin{vmatrix} -1 & 0 \\ 4 & 2 \end{vmatrix}=\left( -1\times 2+4\times 0 \right) =-2+0=-2$$

    (D) Cofactor of $$\displaystyle 6={ c }_{ 33 }=\begin{vmatrix} 1 & -1 \\ 0 & 4 \end{vmatrix}=\left( 1\times 4-0\left( -1 \right)  \right) =4-0=4.$$
  • Question 5
    1 / -0
    $$\begin{vmatrix}
    1+i &1-i &1 \\
    1-i& i&1+i \\
    i & 1+i & 1-i
    \end{vmatrix}$$ is a 
    Solution
    $$1+i[i(1-i)-(1+i)^{2}]-(1-i)\left [ (1-i)^{2}-i(1+i) \right ]+1\left [ (1-i)(1+i)-i^{2} \right ]$$

    $$=(1+i)\left [ 1-l^{2}-2i \right ]-(1-i)\left [ 1+l^{2}-2i-i-l^{2} \right ]+\left [ 1-l^{2}-l^{2} \right ]$$

    $$=(1+i)[-2i^{2}-2i]-(1-i)(1-3i)+[1-2i^{2}]$$

    $$=(1+i)[+2-2i]-(1-i) (1-3i)-1$$

    $$2[1-l^2]-(1-i)(1-3i)-1$$

    $$4-(1-3i-i+3i^2)-1$$

    $$3-(1-4i-3)$$

    $$3-(-2-4i)$$

    $$=5+4i$$

    so (c) complex number
  • Question 6
    1 / -0
    $$\mathrm{D}\mathrm{e}\mathrm{t} \left\{\begin{array}{lll}
    -2a & a+b & c+a\\
    b+a & -2b & b+c\\
    c+a & c+b & -2c
    \end{array}\right\}=$$ 

    Solution
    Taking  $$a=b=c=1$$ in the given matrix, we get
    $$\begin{pmatrix}
    -2 & 2 & 2\\
    2 & -2 & 2\\
    2 & 2 & -2
    \end{pmatrix}$$

    $$=-2(4-4)-2(-4-4)+2(4+4)$$

    $$=-2(-8)+2(8)$$

    $$=32=4(a+b)(b+c)(c+a)$$
  • Question 7
    1 / -0
    The sum of infinite series $$\begin{vmatrix}
    1 &2 \\
    6 & 4
    \end{vmatrix}+\begin{vmatrix}
    \frac{1}{2} &2 \\
    2& 4
    \end{vmatrix}+\begin{vmatrix}
    \frac{1}{4} & 2\\
    \frac{2}{3}& 4
    \end{vmatrix}+$$ ....... is 
    Solution
    $$\begin{vmatrix} 1 & 2 \\ 6 & 4 \end{vmatrix}+\begin{vmatrix} \frac { 1 }{ 2 }  & 2 \\ 2 & 4 \end{vmatrix}+\begin{vmatrix} \frac { 1 }{ 4 }  & 2 \\ \frac { 2 }{ 3 }  & 4 \end{vmatrix}+.......$$

    $$\displaystyle =4-12+2-4+1-\frac { 4 }{ 3 } +.....$$

    $$\displaystyle=(4+2+1+...)-(12+4+\frac { 4 }{ 3 }+....)$$

    $$\displaystyle=\frac{4}{1-\frac{1}{2}}- \frac{12}{1-\frac{1}{3}}$$

    $$=8-18=-10$$

  • Question 8
    1 / -0
    lf $$f(x)=\left| \begin{matrix} \sec { x }  & \cos { x }  \\ \cos ^{ 2 }{ x }  & \cos ^{ 2 }{ x }  \end{matrix} \right| $$, then $$\displaystyle \int_{0}^{\pi/2}f(x)dx=$$
    Solution
    $$ \displaystyle f(x)=\sec x \cos^2x- \cos x \times \cos^2x.$$
    $$ \displaystyle =\cos x- \cos^3x.$$
    $$ \displaystyle \int_{0}^{\pi/2}\left(cosx-cos^{3}x \right)dx=\int_{0}^{\pi/2} \cos x \sin^{2}xdx$$
    Substitute $$ \sin x=t$$
    $$ \Rightarrow \cos x dx=dt$$
    The integral becomes 
    $$ \displaystyle \int_{0}^{1}t^{2}dt$$
    $$ \displaystyle =\left[ \frac{t^{3}}{3} \right]_{0}^{1}=1/3$$

  • Question 9
    1 / -0
    If $$\begin{vmatrix}
    x & 2& 3\\
    2& 3 &x \\
    3& x &2
    \end{vmatrix}=\begin{vmatrix}
    1 &x &4 \\
    x&1 &4 \\
    4 & 1 & x
    \end{vmatrix}=\begin{vmatrix}
    0 & 5 &x \\
    5 & x & 0\\
    x & 0 & 5
    \end{vmatrix}=0$$ then the value x equals $$(x\epsilon R)$$ 
    Solution
    Solving $$\displaystyle \begin{vmatrix} x & 2 & 3 \\ 2 & 3 & x \\ 3 & x & 2 \end{vmatrix}=\begin{vmatrix} 0 & 5 & x \\ 5 & x & 0 \\ x & 0 & 5 \end{vmatrix}$$

    $$\displaystyle \Rightarrow x\left( 6-{ x }^{ 2 } \right) -2\left( 4-3x \right) +3\left( 2x-9 \right) =0-5\left( 25-0 \right) +x\left( 0-{ x }^{ 2 } \right) $$

    $$\displaystyle \Rightarrow 6x-{ x }^{ 3 }-8+6x+6x-27=-125-{ x }^{ 3 }$$

    $$\displaystyle \Rightarrow 18x=-90\Rightarrow x=-5$$

    And solving $$\displaystyle \begin{vmatrix} 1 & x & 4 \\ x & 1 & 4 \\ 4 & 1 & x \end{vmatrix}=\begin{vmatrix} 0 & 5 & x \\ 5 & x & 0 \\ x & 0 & 5 \end{vmatrix}$$

    $$\displaystyle \Rightarrow 1\left( x-4 \right) -x\left( { x }^{ 2 }-16 \right) +4\left( x-4 \right) =0-5\left( 25-0 \right) +x\left( 0-{ x }^{ 2 } \right) $$

    $$\displaystyle \Rightarrow x-4-{ x }^{ 3 }+16x+4x-16=125-{ x }^{ 3 }$$

    $$\displaystyle \Rightarrow 21x=-105\Rightarrow x=-5$$

    Hence solution is $$x=-5$$
  • Question 10
    1 / -0
    .Let $$\Delta$$ $$(x)=$$$$\begin{vmatrix}
    x+a & x+b &x+a-c \\
    x+b & x+c &x-1 \\
    x+c & x+d &x-b+d
    \end{vmatrix}$$ and $$\displaystyle \int_{0}^{2}\Delta(x) dx =-16$$, where $$\mathrm{a}$$, b,c,d are in A.$$\mathrm{P}$$. then the common difference of the A.$$\mathrm{P}$$. is 

    Solution
     Let $$common\ diff\ = m$$
    $$R_1\rightarrow R_1-R_2$$
    $$\Delta(x)=\begin{vmatrix}
    a-b & b-c & a-c+1\\
    x+b & x+c & x-1\\
    x+c & x+d & x-b+d
    \end{vmatrix}$$
    $$R_3\rightarrow R_3-R_2$$
    $$\Delta (x)=\begin{vmatrix}
    a-b & b-c & a-c+1\\
    x+b & x+c & x-1\\
    c-b & d-c & d-b+1
    \end{vmatrix}$$
    $$=\begin{vmatrix}
    m & m & -2m+1\\
    x+b & x+c & x-1\\
    m & m & 2m+1
    \end{vmatrix}$$
    Applying $$C_2\rightarrow C_2-C_1$$

    =$$\begin{vmatrix}
    m & 0 & -2m+1\\
    x+b & m &x-1 \\
    m & 0 & 2m+1
    \end{vmatrix}$$

    $$=m(2m^2+m+2m^2-m)$$
    $$=-4m^3$$
    $$\int_{0}^{2}\Delta=-m^3(2)=-16$$
    $$m=\pm2$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now