Self Studies

Determinants Te...

TIME LEFT -
  • Question 1
    1 / -0

    Points $$(1, 5), (2, 3)$$ and $$(-2, -11) $$ are ____

  • Question 2
    1 / -0

    If $$a\neq p, b\neq q, c\neq r$$ and $$\begin{vmatrix}p & b & c\\ a & q & c\\ a & b & r\end{vmatrix}=0$$, then the value of $$\dfrac{p}{p-a}+\dfrac{q}{q-b}+\dfrac{r}{r-c}$$ is

  • Question 3
    1 / -0

    Find the value of $$m$$ if the points $$(5, 1), (2, 3)$$ and $$(8, 2m )$$ are collinear.

  • Question 4
    1 / -0

    If the points $$(0, 0), (1, 2)$$ and $$(x, y)$$ are collinear, then

  • Question 5
    1 / -0

    $$\left| {\begin{array}{*{20}{c}}
      {{{\sin }^2}x}&{{{\cos }^2}x}&1 \\
      {{{\cos }^2}x}&{{{\sin }^2}x}&1 \\
      { - 10}&{12}&2
    \end{array}} \right| = $$

  • Question 6
    1 / -0

    $$A=\left[\begin{matrix}1&0&0\\2&1&0\\3&2&1\end{matrix}\right], U_1, U_2$$ and $$U_3$$ are columns matrices satisfying $$AU_1=\left[\begin{matrix}1\\0\\0\end{matrix}\right], AU_2 = \left[\begin{matrix}2\\3\\0\end{matrix}\right], AU_3 = \left[\begin{matrix}2\\3\\1\end{matrix}\right]$$ and $$U$$ is $$3\times3$$ matrix whose columns are $$U_1, U_2, U_3$$ then answer the following question
    The value of $$|U|$$ is

  • Question 7
    1 / -0

    If $$(3, 2)$$, $$\left (x, \dfrac {22}{5}\right), (8, 8)$$ lie on a line, then $$x$$ is equal to

  • Question 8
    1 / -0

    If the points $$(0, 4), (4, 0)$$ and $$(5,  p)$$ are collinear, then value of $$p$$ is

  • Question 9
    1 / -0

    P, Q, R are three collinear points. The coordinates of P and R are (3, 4) and (11, 10) respectively and PQ is equal to 2.5 units. Coordinates of Q are-

  • Question 10
    1 / -0

    If the points $$(a, 0), (0, b)$$ and $$(1, 1)$$ are collinear, then $$\displaystyle \frac{1}{a} + \frac{1}{b}$$ equal to -

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now