Self Studies

Determinants Test - 31

Result Self Studies

Determinants Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Points $$(1, 5), (2, 3)$$ and $$(-2, -11) $$ are ____
    Solution
    Let $$A (1, 5), B (2, -3)$$ and $$C (2, 3)$$ be the given points. 
    According to distance formula, we have
    $$AB=\sqrt { { (2-1) }^{ 2 }+{ (3-5) }^{ 2 } } \\ =\sqrt { 1+4 } =\sqrt { 5 } \quad \\ $$
    $$BC=\sqrt { { (-2-2) }^{ 2 }+{ (-11-3) }^{ 2 } } \\ =\sqrt { 16+196 } =\sqrt { 212 } =2\sqrt { 53 }$$ 
    AC$$=\sqrt { { (1+2) }^{ 2 }+{ (5+11) }^{ 2 } } \\ =\sqrt { 9+256 } =\sqrt { 265 } \quad \\ $$
    Clearly, the given points didn't satisfy any condition of collinear points, verties of equilateral and right angle triangle.
    Therefore, the given points are non-collinear points.
  • Question 2
    1 / -0
    If $$a\neq p, b\neq q, c\neq r$$ and $$\begin{vmatrix}p & b & c\\ a & q & c\\ a & b & r\end{vmatrix}=0$$, then the value of $$\dfrac{p}{p-a}+\dfrac{q}{q-b}+\dfrac{r}{r-c}$$ is
    Solution
    $$\begin{vmatrix}p & b &c \\ a & q &c \\ a & b &r \end{vmatrix}=0$$

    $$R_1\rightarrow R_1-R_3$$

    $$\begin{vmatrix} p-a& 0 &c-r \\ a & q &c \\ a & b &r \end{vmatrix}=0$$

    $$R_2\rightarrow R_2-R_3$$

    $$\begin{vmatrix} p-a& 0 & c-r\\ 0 & q-b &c-r \\ a & b & r\end{vmatrix}$$

    $$p-a(r(q-b)-b(c-r)+(c-r)(-a(q-b))$$

    $$R_3\rightarrow R_1+R_3$$

    $$\begin{vmatrix} p-a& 0 &c-r \\ 0 & q-b & c-r\\ p & b &c \end{vmatrix}=0$$

    $$\begin{vmatrix} 1& 0 & 1\\ 0 & 1 & 1\\ \dfrac {p}{p-a} & \dfrac {b}{q-b} & \dfrac {c}{c-r}\end{vmatrix}=0$$

    $$\left (\dfrac {c}{c-r}-\dfrac {b}{q-b}\right)+\left (\dfrac {-p}{p-a}\right)=0$$

    $$\dfrac {p}{p-a}=\dfrac {c}{c-r}-\dfrac {b}{q-b}$$ substituting gets value $$=-2$$
  • Question 3
    1 / -0
    Find the value of $$m$$ if the points $$(5, 1), (2, 3)$$ and $$(8, 2m )$$ are collinear.
    Solution
    If three points are collinear, then the area of the triangle formed by taking these points as vertices should zero.
    Area $$=\dfrac{1}{2}$$[$${5(3-2m)+2(2m-1)+8(1-3)}]$$......(using determinant formula of area of triangle)
            $$= \dfrac{1}{2}$$[$${15-10m +4m-2+(-16)}]$$
            $$= \dfrac{1}{2}$$ {$$15-18-6m$$}
            $$ = \dfrac{1}{2}$$$$(-3-6m)=0$$
            $$\Rightarrow (3+6m)=0$$
            $$m=-\dfrac{1}{2}$$.
  • Question 4
    1 / -0
    If the points $$(0, 0), (1, 2)$$ and $$(x, y)$$ are collinear, then
    Solution

    $$  {\textbf{Step - 1: Find equation}} $$

                     $$  {\text{Let A, B, C are the three points}} $$

                     $$  {\text{Since A, B, C are linear they will lie on same line}}{\text{.}} $$

                     $$  {\text{Given points are A}}(0,0),B(1,2)\;{\text{and C}}(x, y) $$

                     $$  {\text{Therefore,}} $$

                     $$  {\text{area }}\Delta {\text{ABC = 0}} $$

                     $$ \Rightarrow  \dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right] = 0 $$

                     $$  {\text{Here, }}{x_1} = 0,{x_2} = 1\;{\text{and }}{x_3} = x $$

                     $$  {\text{and }}{y_1} = 0,\;{y_2} = 2\;{\text{and }}{y_3} = y $$

    $$  {\textbf{Step - 2: Find the relation}} $$

                     $$  \dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right] = 0 $$

                     $$   \Rightarrow \dfrac{1}{2}\left[ {0\left( {2 - y} \right) + 1\left( {y - 0} \right) + x\left( {0 - 2} \right)} \right] = 0 $$

                     $$   \Rightarrow y - 2x = 0 $$

                     $$   \Rightarrow {\text{2x = y}} $$

    $$  {\textbf{Hence, the correct answer is option B}}{\text{.}} $$

     

  • Question 5
    1 / -0
    $$\left| {\begin{array}{*{20}{c}}
      {{{\sin }^2}x}&{{{\cos }^2}x}&1 \\
      {{{\cos }^2}x}&{{{\sin }^2}x}&1 \\
      { - 10}&{12}&2
    \end{array}} \right| = $$
    Solution
    $$\begin{vmatrix}sin^2x & cos^2x & 1\\ cos^2 x & sin^2 x & 1\\ -10 & 12 &2 \end{vmatrix}$$
    $$C_1\rightarrow C_1+C_2$$
    $$=\begin{vmatrix} 1& cos^2x & 1\\ 1 & sin^2x & 1\\ 2 & 12 & 2\end{vmatrix}=0     \    (\because C_1=C_3)$$
  • Question 6
    1 / -0
    $$A=\left[\begin{matrix}1&0&0\\2&1&0\\3&2&1\end{matrix}\right], U_1, U_2$$ and $$U_3$$ are columns matrices satisfying $$AU_1=\left[\begin{matrix}1\\0\\0\end{matrix}\right], AU_2 = \left[\begin{matrix}2\\3\\0\end{matrix}\right], AU_3 = \left[\begin{matrix}2\\3\\1\end{matrix}\right]$$ and $$U$$ is $$3\times3$$ matrix whose columns are $$U_1, U_2, U_3$$ then answer the following question
    The value of $$|U|$$ is
    Solution
    Given, 
    $$AU_1=\left[\begin{matrix}1\\0\\0\end{matrix}\right]$$ $$\Rightarrow U_{1}=A^{-1}\left[\begin{matrix}1\\0\\0\end{matrix}\right]$$    ...(1)

    $$AU_2 = \left[\begin{matrix}2\\3\\0\end{matrix}\right]$$ $$\Rightarrow U_{2}=A^{-1} \left[\begin{matrix}2\\3\\0\end{matrix}\right]$$    ...(2)

    $$AU_3 = \left[\begin{matrix}2\\3\\1\end{matrix}\right]$$ $$\Rightarrow U_{3}=A^{-1} \left[\begin{matrix}2\\3\\1\end{matrix}\right]$$    ...(3)

    Also, given
    $$A=\left[\begin{matrix}1&0&0\\2&1&0\\3&2&1\end{matrix}\right]$$
    $$|A|=1$$
    Now, 
    $$adj\ A=C^{T}=\begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}^{T}$$

    $$\Rightarrow adj A=\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}$$

    $$\Rightarrow A^{-1}= \dfrac{adj\ A}{|A|} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}$$

    Put the value of $$A^{-1}$$ in (1), (2) and (3)
    $$ U_{1}=\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}\left[\begin{matrix}1\\0\\0\end{matrix}\right]$$  $$\Rightarrow U_{1}=\begin{bmatrix}1\\-2\\1\end{bmatrix}$$

    $$ U_{2}=\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix} \left[\begin{matrix}2\\3\\0\end{matrix}\right]$$ $$\Rightarrow U_{2}=\begin{bmatrix}2\\-1\\-4\end{bmatrix}$$

    $$ U_{3}=A^{-1} \left[\begin{matrix}2\\3\\1\end{matrix}\right]$$ $$\Rightarrow U_{3}=\begin{bmatrix}2\\-1\\-3\end{bmatrix}$$

    $$\therefore U=\begin{bmatrix}1&2&2\\-2&-1&-1\\1&-4&-3\end{bmatrix}$$
    $$\Rightarrow |U|= -1-14+18=3$$

    Hence, option A.
  • Question 7
    1 / -0
    If $$(3, 2)$$, $$\left (x, \dfrac {22}{5}\right), (8, 8)$$ lie on a line, then $$x$$ is equal to
    Solution
    The area of the triangle made by the points $$\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 3,2 \right) , \left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( x,\dfrac { 22 }{ 5 }  \right) , \left( { x }_{ 3 },{ y }_{ 3 } \right) =\left( 8,8 \right)$$ will be $$ =0$$, if they  lie on the same straight line.
    Therefore, the area of the $$\Delta  =\dfrac { 1 }{ 2 } \left[ { x }_{ 1 }\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 }-{ y }_{ 2 } \right)  \right] $$
    In this case, the area of the triangle
    $$ = \dfrac { 1 }{ 2 } \left[ 3\left( \dfrac { 22 }{ 5 } -8 \right) +x\left( 8-2 \right) +8\left( 2-\dfrac { 22 }{ 5 }  \right)  \right] =0$$
    $$\Rightarrow  -\dfrac { 54 }{ 5 } +6x-\dfrac { 96 }{ 5 } =0$$
    $$ \Rightarrow 30x=150$$
    $$ \Rightarrow x=5$$
  • Question 8
    1 / -0
    If the points $$(0, 4), (4, 0)$$ and $$(5,  p)$$ are collinear, then value of $$p$$ is
    Solution
    The given points are $$ A=\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 0,4 \right) , B=\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 4,0 \right) , C=\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 5,p \right) $$. 
    They are collinear.
    $$\therefore  ar\Delta ABC=0$$
    $$ \Rightarrow \dfrac { 1 }{ 2 } \left| \begin{matrix} { x }_{ 1 } & { y }_{ 1 } & { 1 } \\ { x }_{ 2 } & { y }_{ 2 } & 1 \\ { x }_{ 3 } & { y }_{ 3 } & 1 \end{matrix} \right| =0 $$
    $$\Rightarrow \left| \begin{matrix} { x }_{ 1 } & { y }_{ 1 } & { 1 } \\ { x }_{ 2 } & { y }_{ 2 } & 1 \\ { x }_{ 3 } & { y }_{ 3 } & 1 \end{matrix} \right| =0$$
    $$ \Rightarrow \left| \begin{matrix} 0 & 4 & 1 \\ 4 & 0 & 1 \\ 5 & p & 1 \end{matrix} \right| =0$$
    $$\Rightarrow 0\left( 0-p \right) +4\left( p-4 \right) +5\left( 4-0 \right) =0$$
    $$ \Rightarrow p=-1$$
  • Question 9
    1 / -0
    P, Q, R are three collinear points. The coordinates of P and R are (3, 4) and (11, 10) respectively and PQ is equal to 2.5 units. Coordinates of Q are-
    Solution

    Given that PQR are three collinear points and

    PQ=2.5. Let us now find the distance of PR

    Recall Distance Formula is =$$ \sqrt { { \left( { x}_{ 2 }{ { x }_{ 1 } } \right)  }^{ 2}+{ \left( { y }_{ 2 }{ { y }_{ 1 } } \right) }^{ 2 } } \\$$

    Distance PR=$$\sqrt { (113)^{ 2 })+(  104) ^{ 2 } }\\=\sqrt{100}=10$$

    Let us now consider S is the midpoint of PR,
    then we have the co-ordinates of S as $$\dfrac{11+3}{2},\dfrac{10+4}{2}=(7, 7)$$.

    $$ \therefore$$ it is clear that Q is the

    midpoint of PS as we have know PQ=2.5 units.

    Thus, to get the co-ordinates of Q take
    midpoint of PS which is $$\dfrac{3+7}{2},\dfrac{4+7}{2}=(5,11/2)$$.

  • Question 10
    1 / -0
    If the points $$(a, 0), (0, b)$$ and $$(1, 1)$$ are collinear, then $$\displaystyle \frac{1}{a} + \frac{1}{b}$$ equal to -
    Solution
    Given points are $$(a,0),(0,b)$$ and $$(1,1)$$
    $$x_1 = a, y_1 = 0, x_2 =0, y_2 = b$$  and $$x-3=1, y_3=1$$
    Condition for collinearity
    $$x_1y_2+x_2y_3+x_3y_1=x_2y_1+x_3y_2+x_1y_3$$ gives
    $$ab+0+0=0 +1.b+a.1  \Rightarrow ab = a+b$$
    $$\Rightarrow \displaystyle 1 = \frac{1}{b}+ \frac{1}{a}$$
    $$  \Rightarrow \dfrac{1}{a} + \dfrac{1}{b}=1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now