Self Studies

Determinants Te...

TIME LEFT -
  • Question 1
    1 / -0

    If $$\displaystyle A= \begin{bmatrix}0 &i-\sin x  &i- \cos x\\sin x -i &0  &\sin x-i \\cos x-i &- \sin x+ i  &0 \end{bmatrix}$$ then $$\displaystyle \left | A \right |$$ equals

  • Question 2
    1 / -0

    If every element of third order determinant of $$\displaystyle \Delta $$ is multiplied by 5 then value of new determinant equals to,

  • Question 3
    1 / -0

    The points $$(a, b + c), (b, c + a)$$ and $$(c, a + b)$$ are

  • Question 4
    1 / -0

    $$\displaystyle A=\begin{bmatrix}1 &-1  &1 \\2
     &1  &-3 \\1  &1  &1 \end{bmatrix}$$ and $$\displaystyle B= \begin{bmatrix}4 &2  &2 \\-5
     &0  &\alpha \\1  &-2  &3 \end{bmatrix}$$ If $$B$$ is the adjoint of $$A$$ then $$\displaystyle \alpha$$ equals

  • Question 5
    1 / -0

     If $$(-3, 11), (6, 2)$$ and $$($$$$k$$$$, 4)$$ are  collinear points, then $$k$$ is equal to

  • Question 6
    1 / -0

    If the points $$\displaystyle \left(\frac{2}{5}, \frac{1}{3}\right), \left(\frac{1}{2} , k \right)$$ and $$\displaystyle \left(\frac{4}{5}, 0 \right)$$ are collinear then find the value of k

  • Question 7
    1 / -0

    The points $$A(7, 8), B(-5, 2)$$ and $$ C(3, 6) $$ 

  • Question 8
    1 / -0

    If $$\omega \neq 1$$ is a complex cube root of unity, and
    $$x+iy=\begin{vmatrix}
    1 & i & -\omega \\
    -i & 1 & \omega ^{2}\\
    \omega  & -\omega ^{2} & 1
    \end{vmatrix}$$
    then

  • Question 9
    1 / -0

    If $$\displaystyle \Delta =\begin{vmatrix}
    0 &b-a  &c-a \\
    a-b &0  &c-b \\
    a-c &b-c  &0
    \end{vmatrix}$$ then $$\displaystyle \Delta $$ is equal to

  • Question 10
    1 / -0

    If points $$(x,0)$$, $$(0,y)$$ and $$(1,1)$$ are collinear then the relation is-

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now