Self Studies

Determinants Test - 37

Result Self Studies

Determinants Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle A= \begin{bmatrix}0 &i-\sin x  &i- \cos x\\sin x -i &0  &\sin x-i \\cos x-i &- \sin x+ i  &0 \end{bmatrix}$$ then $$\displaystyle \left | A \right |$$ equals
    Solution
    $$\displaystyle A= \begin{bmatrix}0 &i-\sin x  &i- \cos x\\sin x -i &0  &\sin x-i \\cos x-i &- \sin x+ i  &0 \end{bmatrix}$$

    $$\displaystyle \therefore \left |  A\right | = \begin{vmatrix} 0 & i-\sin x & i-\cos x\\\sin x -i  & 0  & \sin x-i \\\cos x-i  & i-\sin x & 0\end{vmatrix} $$

    $$\displaystyle =(i-\sin x)(\cos x-i)(\sin x-i) -(i-\cos x)(i-\sin x )^{2}$$

    $$=(i-\sin x)^{2} (i-\cos x)-(i-\sin x)^{2} (i-\cos x)=0$$
  • Question 2
    1 / -0
    If every element of third order determinant of $$\displaystyle \Delta $$ is multiplied by 5 then value of new determinant equals to,
    Solution
    $$|kA|=k^{n}|A|$$ where n is order of matrix
    Let $$\Delta =|A|$$
    So, $${\Delta}'=|5A|=5^{3}|A|$$
    $${\Delta}'=125{\Delta}$$
  • Question 3
    1 / -0
    The points $$(a, b + c), (b, c + a)$$ and $$(c, a + b)$$ are
    Solution


    $${\textbf{Step1: Proving the three points are collinear  }}$$

                  $${\text{Given points are A(a,b + c),B(b,c + a),C(c,a + b)}}$$

                  $${\text{ Lets the points of the triangle be }}\mathbf{{({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})}}$$

                   $${\text{[}}{{\text{x}}_1}({y_2} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})] = 0$$

                  $$\text{Comparing these with the given points}$$

                  $$[a(c + a - a - b) + b(a + b - b - c) + c(b + c - c - a)] $$

                  $$=ac - ab + ab - bc + bc - ac$$

                  $$ = 0$$

    $${\textbf{Hence,The given points are collinear.}}$$

  • Question 4
    1 / -0
    $$\displaystyle A=\begin{bmatrix}1 &-1  &1 \\2
     &1  &-3 \\1  &1  &1 \end{bmatrix}$$ and $$\displaystyle B= \begin{bmatrix}4 &2  &2 \\-5
     &0  &\alpha \\1  &-2  &3 \end{bmatrix}$$ If $$B$$ is the adjoint of $$A$$ then $$\displaystyle \alpha$$ equals
    Solution
    $$\displaystyle A=\left [ \begin{matrix}1 &-1  &1 \\ 2 &1  &-3 \\ 1 &1  &1 \end{matrix} \right ]$$
     and $$\displaystyle B=\left [ \begin{matrix}4 &2  &2 \\ -5 &0  &\alpha  \\ 1 &-2  &3 \end{matrix} \right ]$$

    Also given, $$adj A=B$$

    Now,$$adj A=C^{T}=\left[ \begin{matrix} 4 & -5 & 1 \\ 2 & 0 & -2 \\ 2 & 5 & 3 \end{matrix} \right] ^{T}$$

    $$\Rightarrow adj A=\left[ \begin{matrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{matrix} \right] $$

    $$\Rightarrow \left[ \begin{matrix} 4 & 2 & 2 \\  -5 & 0 & 5 \\ 1 & -2 & 3 \end{matrix} \right] =\left [ \begin{matrix}4 &2  &2 \\ -5 &0  &\alpha  \\ 1 &-2  &3 \end{matrix} \right ]$$

    On comparing ,we get $$\alpha=5$$

  • Question 5
    1 / -0
     If $$(-3, 11), (6, 2)$$ and $$($$$$k$$$$, 4)$$ are  collinear points, then $$k$$ is equal to
    Solution
    If $$3$$ points $$P\left( { x }_{ 1 },{ y }_{ 1 } \right) , Q\left( { x }_{ 2 },{ y }_{ 2 } \right) $$ and $$ R\left( { x }_{ 3 },{ y }_{ 3 } \right) $$ are collinear, then slope $$ { m }_{ PQ }=$$ slope $$ { m }_{ QR } =$$ slope $${ m }_{ PR }$$. 
    The given points are $$ P\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 3,11 \right) , Q\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( 6,2 \right) $$ and $$ R\left( { x }_{ 3 },{ y }_{ 3 } \right) =\left( k,4 \right) $$. 
    Now if $$3$$ points $$ P\left( { x }_{ 1 },{ y }_{ 1 } \right) , Q\left( { x }_{ 2 },{ y }_{ 2 } \right) $$ and $$R\left( { x }_{ 3 },{ y }_{ 3 } \right) $$ are collinear, then
    slope $$ { m }_{ PQ }=$$ slope $$ { m }_{ QR } =$$ slope $${ m }_{ PR }$$
    Slope $$ { m }_{ PQ }=\dfrac { { y }_{ 2 }-{ y }_{ 1 } }{ { x }_{ 2 }-{ x }_{ 1 } } =\dfrac { 4-11 }{ k-3 } $$, slope $$ { m }_{ PR }=\dfrac { { y }_{ 3 }-{ y }_{ 1 } }{ { x }_{ 3 }-{ x }_{ 1 } } =\dfrac { 4-2 }{ k-6 } $$
    $$ \therefore \dfrac { 4-11 }{ k-3 } =\dfrac { 4-2 }{ k-6 } $$
    $$\Rightarrow 2k+6=-7k+42$$
    $$\Rightarrow k=4$$

  • Question 6
    1 / -0
    If the points $$\displaystyle \left(\frac{2}{5}, \frac{1}{3}\right), \left(\frac{1}{2} , k \right)$$ and $$\displaystyle \left(\frac{4}{5}, 0 \right)$$ are collinear then find the value of k
    Solution

    When three points A, B and C are collinear, slope of line

    joining any two points (say AB) $$ = $$ slope of line joining any other two

    points (say BC).

    Slope of the line passing through points $$\left( { x }_{ 1 },{ y }_{ 1 }

    \right) $$ and $$\left( { x }_{ 2 },{ y }_{ 2 } \right)$$ $$ = $$ $$\dfrac { { y

    }_{ 2 }-{ y }_{ 1 } }{ { x }_{ 2 }-x_{ 1 } } $$

    Slope of the line passing through $$( \dfrac {2}{5}, \dfrac {1}{3})$$ and $$( \dfrac {1}{2}, k) 

    =$$ Slope of line passing through $$(\dfrac {1}{2}, k)$$ and $$( \dfrac {4}{5},0) $$

     $$ \dfrac { k- \dfrac{1}{3} }{ \dfrac {1}{2} - \dfrac {2}{5} } = \dfrac { 0 - k}{ \dfrac {4}{5} - \dfrac{1}{2} } $$

    On solving, $$ k =  \dfrac {1}{4} $$


  • Question 7
    1 / -0
    The points $$A(7, 8), B(-5, 2)$$ and $$ C(3, 6) $$ 
    Solution
    The given points are $$ A\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 7,8 \right) , B\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( -5,2 \right) $$ and $$ C\left( { x }_{ 3 },{ y }_{ 3 } \right) =\left( 3,6 \right) $$. 
    Now if $$3$$ points $$A\left( { x }_{ 1 },{ y }_{ 1 } \right) , B\left( { x }_{ 2 },{ y }_{ 2 } \right) $$ and $$ C\left( { x }_{ 3 },{ y }_{ 3 } \right) $$ are collinear, then slope $$ { m }_{ AB }=slope\quad { m }_{ BC } =$$ slope $${  m }_{ AC }$$
    Slope $$ { m }_{ AB }=\dfrac { { y }_{ 2 }-{ y }_{ 1 } }{ { x }_{ 2 }-{ x }_{ 1 } } =\dfrac { 2-8 }{ -5-7 } =\dfrac { 1 }{ 2 } $$ 
    Slope $${ m }_{ BC }=\dfrac { { y }_{ 3 }-{ y }_{ 2 } }{ { x }_{ 3 }-{ x }_{ 2 } } =\dfrac { 6-2 }{ 3+5 } =\dfrac { 1 }{ 2 } $$ and slope $${ m }_{ AC }=\dfrac { { y }_{ 3 }-{ y }_{ 1 } }{ { x }_{ 3 }-{ x }_{ 1 } } =\dfrac { 6-8 }{ 3-7 } =\dfrac { 1 }{ 2 } $$
    Therefore, slope $$ { m }_{ AB }=$$ slope $$ { m }_{ BC }$$ $$=$$ slope $${ \quad m }_{ AC }$$
    Therefore, the points $$A, B$$ and $$C$$ are collinear.

  • Question 8
    1 / -0
    If $$\omega \neq 1$$ is a complex cube root of unity, and
    $$x+iy=\begin{vmatrix}
    1 & i & -\omega \\
    -i & 1 & \omega ^{2}\\
    \omega  & -\omega ^{2} & 1
    \end{vmatrix}$$
    then
    Solution
    $$x+iy=\begin{vmatrix} 1 & i & -\omega  \\ -i & 1 & \omega ^{ 2 } \\ \omega  & -\omega ^{ 2 } & 1 \end{vmatrix}\\$$

    $$ =1\left( 1+{ \omega  }^{ 4 } \right) -i\left( -i-{ \omega  }^{ 3 } \right) -\omega \left( -i-\omega  \right) \\$$

    $$ =1+\omega -i\left( -i+\omega  \right) +i\omega +{ \omega  }^{ 2 }\\ $$

    $$=1+\omega -1-i\omega +i\omega +{ \omega  }^{ 2 }=\omega +{ \omega  }^{ 2 }=-1\\$$

    $$ \Rightarrow x=-1,y=0$$
  • Question 9
    1 / -0
    If $$\displaystyle \Delta =\begin{vmatrix}
    0 &b-a  &c-a \\
    a-b &0  &c-b \\
    a-c &b-c  &0
    \end{vmatrix}$$ then $$\displaystyle \Delta $$ is equal to
    Solution
    $$\displaystyle \Delta =\begin{vmatrix}
    0 &b-a  &c-a \\
    a-b &0  &c-b \\
    a-c &b-c  &0
    \end{vmatrix}$$

    $$\displaystyle \Delta' =\begin{vmatrix}
    0 &a-b  &a-c \\
    b-a &0  &b-c \\
    c-a &c-b  &0
    \end{vmatrix}=-\Delta$$

    Thus $$\Delta$$ is an skew-symmetric matrix

    And we know determinant of a skew-symmetric matrix of odd order is zero

    Hence option 'D' is the correct choice.
  • Question 10
    1 / -0
    If points $$(x,0)$$, $$(0,y)$$ and $$(1,1)$$ are collinear then the relation is-
    Solution
    Area of a triangle with vertices $$({

    x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y }_{ 2 })$$  and $$({

    x }_{ 3 },{ y }_{ 3 })$$  is $$ \left| \dfrac { { x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{ 3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$

    Since the given points are collinear, they do not form a triangle, which means area of the triangle is zero.

    Hence, substituting the points $$({

    x }_{ 1 },{ y }_{ 1 }) = (x,0) $$ ; $$({ x }_{ 2 },{ y }_{ 2 }) = (0,y) $$  and $$({

    x }_{ 3 },{ y }_{ 3 }) = (1,1)$$ in the area formula, we get

    $$ \left| \dfrac { { x }({ y }-1)+0(1-0)+1(0-{ y }) }{ 2 }  \right|  = 0 $$
    $$ => xy - x -y = 0 $$
    $$ => x + y = xy $$
    Hence, option 'B' is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now