Self Studies

Determinants Te...

TIME LEFT -
  • Question 1
    1 / -0

    If $$a, b, c \ \epsilon \ R$$, find the number of real roots of the equation given by $$ \Delta = 0 $$, where  
    $$\Delta =\begin{vmatrix}
    x & c & -b\\
    -c & x & a\\
    b & -a & x
    \end{vmatrix}$$.

  • Question 2
    1 / -0

    If $$A=\begin{bmatrix} 0&\sin \alpha   & \sin \alpha\sin \beta \\-\sin \alpha &0  &\cos \alpha \sin \beta  \\-\sin \alpha \sin \beta  &-\cos \alpha \cos \beta   &0 \end{bmatrix}$$, then which of the following is true?

  • Question 3
    1 / -0

    For which value of '$$k$$' the points $$(7, -2), (5, 1), (3, k)$$ are collinear?

  • Question 4
    1 / -0

    If $$(3,2)$$, $$(4,k)$$ and $$(5,3)$$ are collinear, then $$k$$ is equal to:

  • Question 5
    1 / -0

    Let $$A$$ be a non-singular matrix. Then $$\left| adjA \right| $$ is equal to

  • Question 6
    1 / -0

    The value of the determinant $$\begin{vmatrix} -a& b & c\\ a & -b &c \\ a & b &-c \end{vmatrix}$$ is equal to

  • Question 7
    1 / -0

    If $$D_p=\begin{vmatrix} p& 15 & 8\\ p^2 & 35 & 9\\ p^3 & 25 & 10\end{vmatrix}$$, then $$D_1+D_2+D_3+D_4+D_5$$ is equal to

  • Question 8
    1 / -0

    Directions For Questions

    $$\displaystyle \Delta (x)=\begin{vmatrix}
    2x^{3}-3x^{2} &5x+7  &2 \\
    4x^{3}-7x &3x+2  & 1 \\
    7x^{3}-8x^{2} &x-1  &3
    \end{vmatrix}$$$$\displaystyle =a_{0}+a_{1}x+...+a_{4}x^{4}$$

    To evaluate $$a_j$$ we differentiate $$\displaystyle \Delta (x), j$$  times w.r.t. x and put $$x=0$$ or 
    divide $$\displaystyle \Delta (x)$$ by $$x^{4}$$ put $$ \dfrac{1}{x}=t$$ differentiate $$(4-j)$$ time w.r.t $$t$$ and put $$t=0$$

    ...view full instructions

    $$\displaystyle a_{0}$$ equals

  • Question 9
    1 / -0

    If $$A=\begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix}$$, then adj (adj $$A$$) is equal to

  • Question 10
    1 / -0

    A set of points which lie on same line are called as

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now