Self Studies

Determinants Test - 38

Result Self Studies

Determinants Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$a, b, c \ \epsilon \ R$$, find the number of real roots of the equation given by $$ \Delta = 0 $$, where  
    $$\Delta =\begin{vmatrix}
    x & c & -b\\
    -c & x & a\\
    b & -a & x
    \end{vmatrix}$$.
    Solution
    $$\triangle =\left| \begin{matrix} x & c & -b \\ -c & x & a \\ b & -a & x \end{matrix} \right| \\ \triangle =\quad x({ x }^{ 2 }\quad +\quad { a }^{ 2 })\quad -c(-cx-ab)\quad -b(ac-xb)\\ \because \quad \triangle \quad =\quad 0\\ \therefore \quad x({ x }^{ 2 }\quad +\quad { a }^{ 2 })\quad -c(-cx-ab)\quad -b(ac-xb)\quad =\quad 0\\ \Rightarrow \quad { x }^{ 3 }\quad +\quad { a }^{ 2 }x\quad +\quad { c }^{ 2 }x\quad +\quad abc\quad -\quad abc\quad +\quad x{ b }^{ 2 }\quad =\quad 0\\ \Rightarrow \quad { x }^{ 3 }\quad +\quad { a }^{ 2 }x\quad +\quad { c }^{ 2 }x\quad +\quad x{ b }^{ 2 }\quad =\quad 0\\ \Rightarrow \quad { x }^{ 3 }\quad +\quad ({ a }^{ 2 }\quad +\quad { c }^{ 2 }\quad +\quad { b }^{ 2 })x\quad =\quad 0$$
    As $$a^{2} + b^{2}+c^{2} $$  is positive, so $$ x\ =\ 0 $$ is the only real solution
  • Question 2
    1 / -0
    If $$A=\begin{bmatrix} 0&\sin \alpha   & \sin \alpha\sin \beta \\-\sin \alpha &0  &\cos \alpha \sin \beta  \\-\sin \alpha \sin \beta  &-\cos \alpha \cos \beta   &0 \end{bmatrix}$$, then which of the following is true?
    Solution
    $$A=\begin{bmatrix} 0 & \sin { \alpha  }  & \sin { \alpha  } \sin { \beta  }  \\ -\sin { \alpha  }  & 0 & \cos { \alpha  } \cos { \beta  }  \\ -\sin { \alpha  } \sin { \beta  }  & -\cos { \alpha  } \cos { \beta  }  & 0 \end{bmatrix}$$
    A is a skew symmetric matrix
    $$\Rightarrow \left| A \right| =0$$
    $$\Rightarrow { A }^{ -1 }$$ does not exist and
    $$\left| A \right| $$ is independent of $$\alpha \& \beta $$
    Option A
  • Question 3
    1 / -0
    For which value of '$$k$$' the points $$(7, -2), (5, 1), (3, k)$$ are collinear?
    Solution
    Since points are collinear,

    so, $$x_1(y_2 - y_3)+x_2(y_3 - y_1) + x_3(y_1 - y_2)= 0$$

    Take ($$7, -2$$) as $$(x_1 , y_1)$$, ($$5, 1$$) as $$(x_2 , y_2)$$ and ($$3 , k$$) as $$(x_3 , y_3)$$, we have

    $$7(1 -k ) + 5(k + 2) + 3(-2 -1) = 0$$

    $$\Rightarrow$$ $$7- 7k + 5k + 10 -9 =0$$

    $$\Rightarrow$$ $$2k =8$$ 

    $$\Rightarrow$$ $$k = 4$$
  • Question 4
    1 / -0
    If $$(3,2)$$, $$(4,k)$$ and $$(5,3)$$ are collinear, then $$k$$ is equal to:
    Solution
    As the points are collinear, the slope of the line joining any two points, should be same as the slope of the line joining two other points.
    Slope of the line passing through points $$\left( { x }_{ 1 },{ y }_{ 1 } \right) $$ and $$\left( { x }_{ 2 },{ y }_{ 2 } \right)$$ is $$\dfrac { { y }_{ 2 }-{y }_{ 1 } }{ { x }_{ 2 }-x_{ 1 } } $$
    So, 
    Slope of the line joining $$ (3,2) , (4,k) = $$ Slope of the line joining $$ (3,2) $$ and $$ (5,3) $$ 
    $$ \dfrac { k - 2 }{ 4 - 3 } = \dfrac { 3- 2 }{ 5 - 3 } $$
    $$ k - 2 = \dfrac { 1 }{ 2 } $$
    $$ k = \dfrac { 5 }{ 2 } $$
    Hence, option C.
  • Question 5
    1 / -0
    Let $$A$$ be a non-singular matrix. Then $$\left| adjA \right| $$ is equal to
    Solution
    Since A is non-singular 
    $$\therefore { A }^{ -1 }$$ exists 
    Now ,$$A$$ $$\left( adjA \right) $$=$$\displaystyle\left| A \right| I=$$$$(adjA)A$$
    $$\displaystyle \Rightarrow \left| A \right| \left| adjA \right| ={ \left| A \right|  }^{ n }=\left| adjA \right| \left| A \right| $$
    $$\displaystyle \therefore \left| adjA \right| ={ \left| A \right|  }^{ n-1 }$$
  • Question 6
    1 / -0
    The value of the determinant $$\begin{vmatrix} -a& b & c\\ a & -b &c \\ a & b &-c \end{vmatrix}$$ is equal to
    Solution
    $$\begin{vmatrix} -a & b & c \\ a & -b & c \\ a & b & -c \end{vmatrix}=\left( -a \right) \left( bc-bc \right) -b\left( -ac-ac \right) +c\left( ab+ab \right) \\ =2abc+2abc=4abc$$
  • Question 7
    1 / -0
    If $$D_p=\begin{vmatrix} p& 15 & 8\\ p^2 & 35 & 9\\ p^3 & 25 & 10\end{vmatrix}$$, then $$D_1+D_2+D_3+D_4+D_5$$ is equal to
    Solution
    $$D_{ p }=\begin{vmatrix} p & 15 & 8 \\ p^{ 2 } & 35 & 9 \\ p^{ 3 } & 25 & 10 \end{vmatrix}=5\begin{vmatrix} p & 3 & 8 \\ p^{ 2 } & 7 & 9 \\ p^{ 3 } & 5 & 10 \end{vmatrix}\\ =5\left( p\left( 70-45 \right) -{ p }^{ 2 }\left( 30-40 \right) +{ p }^{ 3 }\left( 27-56 \right)  \right) \\ =5\left( 25p+10{ p }^{ 2 }-29{ p }^{ 3 } \right) $$
    $$D_{ 1 }+D_{ 2 }+D_{ 3 }+D_{ 4 }+D_{ 5 }\\ =5\left( 25+10-29 \right) +5\left( 25.2+10.2^{ 2 }-29.{ 2 }^{ 3 } \right) +5\left( 25.3+10{ .3 }^{ 2 }-29{ .3 }^{ 3 } \right) \\ +5\left( 25.4+10{ .4 }^{ 2 }-29{ .4 }^{ 3 } \right) +5\left( 25.5+10{ .5 }^{ 2 }-29{ .5 }^{ 3 } \right) \\ =28000$$
  • Question 8
    1 / -0

    Directions For Questions

    $$\displaystyle \Delta (x)=\begin{vmatrix}
    2x^{3}-3x^{2} &5x+7  &2 \\
    4x^{3}-7x &3x+2  & 1 \\
    7x^{3}-8x^{2} &x-1  &3
    \end{vmatrix}$$$$\displaystyle =a_{0}+a_{1}x+...+a_{4}x^{4}$$

    To evaluate $$a_j$$ we differentiate $$\displaystyle \Delta (x), j$$  times w.r.t. x and put $$x=0$$ or 
    divide $$\displaystyle \Delta (x)$$ by $$x^{4}$$ put $$ \dfrac{1}{x}=t$$ differentiate $$(4-j)$$ time w.r.t $$t$$ and put $$t=0$$

    ...view full instructions

    $$\displaystyle a_{0}$$ equals

    Solution
    $$\triangle \left( x \right) =\begin{vmatrix} 2{ x }^{ 3 }-3{ x }^{ 2 } & 5x+7 & 2 \\ 4{ x }^{ 3 }-7x & 3x+2 & 1 \\ 7{ x }^{ 3 }-8{ x }^{ 2 } & x-1 & 3 \end{vmatrix}={ a }_{ 0 }+{ a }_{ 1 }x+....{ a }_{ 4 }{ x }^{ 4 }$$
    Putting $$x=0$$ we get $${ a }_{ 0 }=?$$
    $$\triangle \left( 0 \right) ={ a }_{ 0 }=\begin{vmatrix} 0 & 7 & 2 \\ 0 & 2 & 1 \\ 0 & -1 & 3 \end{vmatrix}=0$$
    $$\therefore { a }_{ 0 }=0$$
    Option A
  • Question 9
    1 / -0
    If $$A=\begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix}$$, then adj (adj $$A$$) is equal to
    Solution
    For $$A=\begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix}$$
    $$adj\left( A \right) =\begin{bmatrix} 3 & -3 \\ -2 & 4 \end{bmatrix}$$
    $$adj\left( adj\left( A \right)  \right) =\begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix}$$
  • Question 10
    1 / -0
    A set of points which lie on same line are called as
    Solution
    A set of points which lie on same line are called as collinear.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now