Self Studies

Determinants Te...

TIME LEFT -
  • Question 1
    1 / -0

    If $$x, y, z$$ are positive numbers, then value of the determinant $$\begin{vmatrix}1 & log_xy & log_xz \\ log_yx & 1 & log_yz\\ log_zx & log_zy & 1\end{vmatrix}$$ is equal to

  • Question 2
    1 / -0

    If $$\Delta =\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{vmatrix}$$ and $$A_2, B_2, C_2$$ are respectively cofactors of $$a_2, b_2, c_2$$ then $$a_1A_2 + b_1B_2 + c_1C_2$$ is equal to

  • Question 3
    1 / -0

    If [a] denotes the greatest integer less than or equal to a and $$-1 \leq x < 0, 0 \leq y < 1, 1 \leq z < 2$$, then $$\begin{vmatrix}[x]+1 & [y] & [z] \\ [x] & [y]+1 & [z] \\ [x] & [y] & [z]+1\end{vmatrix}$$ is equal to

  • Question 4
    1 / -0

    If cofactor of 2x in the determinant $$\begin{vmatrix}x & 1 & -2 \\ 1 & 2x & x-1 \\ x-1 & x & 0\end{vmatrix}$$ is zero, then $$x$$ equals to

  • Question 5
    1 / -0

    If $$A =$$$$\displaystyle \begin{bmatrix}\alpha  & 2\\ 2 & \alpha \end{bmatrix}$$ and $$\displaystyle \left | A \right |^{3}=125$$ then the value of $$\displaystyle \alpha $$ is

  • Question 6
    1 / -0

    If A and B are square matrices of order 3, then 
     

  • Question 7
    1 / -0

    Consider the determinant $$\Delta=\begin{vmatrix}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{vmatrix}$$
    $$M_{ij} =$$ Minor of the element of $$i^{th}$$ row & $$j^{th}$$ column.
    $$C_{ij} =$$ Cofactor of element of $$i^{th}$$ row & $$j^{th}$$ column.
    $$a_3M_{13} - b_3M_{23} + c_3M_{33}$$ is equal to

  • Question 8
    1 / -0

    Consider the determinant $$\Delta=\begin{vmatrix}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{vmatrix}$$
    $$M_{ij} =$$ Minor of the element of $$i^{th}$$ row & $$j^{th}$$ column.
    $$C_{ij} =$$ Cofactor of element of $$i^{th}$$ row & $$j^{th}$$ column.
    Value of $$b_1.C_{31} + b_2.C_{32} + b_3.C_{33}$$ is

  • Question 9
    1 / -0

    If $$A=\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$$, then $$A(Adj. A)$$ equals-

  • Question 10
    1 / -0

    If $$A=\begin{bmatrix} 1 & -2 & 3 \\ 4 & 0 & -1 \\ -3 & 1 & 5 \end{bmatrix}$$, then $${(adj. A)}_{23}$$ is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now