Self Studies

Determinants Test - 40

Result Self Studies

Determinants Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$x, y, z$$ are positive numbers, then value of the determinant $$\begin{vmatrix}1 & log_xy & log_xz \\ log_yx & 1 & log_yz\\ log_zx & log_zy & 1\end{vmatrix}$$ is equal to
    Solution
    The value of the determinant is $$\begin{vmatrix} 1 & \log _{ x }{ y }  & \log _{ x }{ z }  \\ \log _{ y }{ x }  & 1 & \log _{ y }{ z }  \\ \log _{ z }{ x }  & \log _{ z }{ y }  & 1 \end{vmatrix}$$

    $$ =\left( 1-\log _{ y }{ z\log _{ z }{ y }  }  \right) -\log _{ x }{ y } \left( \log _{ y }{ x } -\log _{ y }{ z\log _{ z }{ x }  }  \right) +\log _{ x }{ z } \left( \log _{ y }{ x\log _{ z }{ y } -\log _{ z }{ x }  }  \right)$$   $$[\because log{_n}^m=\dfrac{logm}{logn}]$$

    $$ =0-1+1+1-1=0$$
  • Question 2
    1 / -0
    If $$\Delta =\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{vmatrix}$$ and $$A_2, B_2, C_2$$ are respectively cofactors of $$a_2, b_2, c_2$$ then $$a_1A_2 + b_1B_2 + c_1C_2$$ is equal to
    Solution
    $$\Delta =\begin{vmatrix} { a }_{ 1 } & { b }_{ 1 } & { c }_{ 1 } \\ { a }_{ 2 } & { b }_{ 2 } & { c }_{ 2 } \\ { a }_{ 3 } & { b }_{ 3 } & { c }_{ 3 } \end{vmatrix}\\ { A }_{ 2 }=-\begin{vmatrix} { b }_{ 1 } & { c }_{ 1 } \\ { b }_{ 3 } & { c }_{ 3 } \end{vmatrix}={ b }_{ 3 }{ c }_{ 1 }-{ b }_{ 1 }{ c }_{ 3 }\\ B_{ 2 }=\begin{vmatrix} { a }_{ 1 } & { c }_{ 1 } \\ { a }_{ 3 } & { c }_{ 3 } \end{vmatrix}={ c }_{ 3 }{ a }_{ 1 }-{ c }_{ 1 }{ a }_{ 3 }\\ C_{ 3 }=-\begin{vmatrix} { a }_{ 1 } & { b }_{ 1 } \\ { a }_{ 3 } & { b }_{ 3 } \end{vmatrix}={ a }_{ 3 }{ b }_{ 1 }-{ a }_{ 1 }{ b }_{ 3 }\\ \therefore { a }_{ 1 }{ A }_{ 2 }+{ b }_{ 1 }B_{ 2 }+{ c }_{ 1 }C_{ 3 }={ a }_{ 1 }{ b }_{ 3 }{ c }_{ 1 }-{ a }_{ 1 }{ b }_{ 1 }{ c }_{ 3 }+{ a }_{ 1 }{ b }_{ 1 }{ c }_{ 3 }-{ a }_{ 3 }{ b }_{ 1 }{ c }_{ 1 }+{ a }_{ 3 }{ b }_{ 1 }{ c }_{ 1 }-{ a }_{ 1 }{ b }_{ 3 }{ c }_{ 1 }=0$$
  • Question 3
    1 / -0
    If [a] denotes the greatest integer less than or equal to a and $$-1 \leq x < 0, 0 \leq y < 1, 1 \leq z < 2$$, then $$\begin{vmatrix}[x]+1 & [y] & [z] \\ [x] & [y]+1 & [z] \\ [x] & [y] & [z]+1\end{vmatrix}$$ is equal to
    Solution
    $$- 1 \leq x < 0\rightarrow [x] =- 1$$

    $$0 \leq y < 1 \rightarrow [y] = 0$$

    $$1 \leq z < 2 \rightarrow [z] = 1$$

    $$\begin{vmatrix}0 & 0 & 1 \\ -1 & 1 & 1 \\ -1 & 0 & 2\end{vmatrix}$$

    $$=1=[z]$$


  • Question 4
    1 / -0
    If cofactor of 2x in the determinant $$\begin{vmatrix}x & 1 & -2 \\ 1 & 2x & x-1 \\ x-1 & x & 0\end{vmatrix}$$ is zero, then $$x$$ equals to
    Solution
    Cofactor of $$2x=0$$
    $$\displaystyle \Rightarrow { C }_{ 22 }=0$$
    $$\displaystyle \Rightarrow -1^{(2+2)}\begin{vmatrix} x & -2 \\ x-1 & 0 \end{vmatrix}=0$$
    $$\displaystyle \Rightarrow x\times 0-\left( -2 \right) \left( x-1 \right) =0$$
    $$\displaystyle \Rightarrow 2\left( x-1 \right) =0\Rightarrow x=1$$  
  • Question 5
    1 / -0
    If $$A =$$$$\displaystyle \begin{bmatrix}\alpha  & 2\\ 2 & \alpha \end{bmatrix}$$ and $$\displaystyle \left | A \right |^{3}=125$$ then the value of $$\displaystyle \alpha $$ is
    Solution
    We know $$\left| { A }^{ n } \right| ={ \left| A \right|  }^{ n }$$ 
    Since, $$\left| { A }^{ 3 } \right| =125\Rightarrow { \left| A \right|  }^{ 3 }=125$$
    $$\Rightarrow \begin{vmatrix} \alpha  & 2 \\ 2 & \alpha  \end{vmatrix}=5$$
    $$\Rightarrow { \alpha  }^{ 2 }-4=5$$
    $$\Rightarrow \alpha =\pm 3$$
  • Question 6
    1 / -0
    If A and B are square matrices of order 3, then 
     
    Solution
    If $$A$$ and $$B$$ are square matrices of order $$3$$,
    Then $$Adj(AB)=AdjB. AdjA$$
    Where, $$Adj(A)={ A }^{ -1 }\left| A \right| $$
                $$Adj(B)={ B }^{ -1 }\left| B \right| $$
                $$Adj(AB)={ (AB) }^{ -1 }\left| AB \right| =B^{-1}A^{-1}|AB|=AdjB.AdjA$$
  • Question 7
    1 / -0
    Consider the determinant $$\Delta=\begin{vmatrix}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{vmatrix}$$
    $$M_{ij} =$$ Minor of the element of $$i^{th}$$ row & $$j^{th}$$ column.
    $$C_{ij} =$$ Cofactor of element of $$i^{th}$$ row & $$j^{th}$$ column.
    $$a_3M_{13} - b_3M_{23} + c_3M_{33}$$ is equal to
    Solution
    $${ a }_{ 3 }{ M }_{ 13 }-{ b }_{ 2 }{ M }_{ 23 }+{ c }_{ 3 }{ M }_{ 33 }$$

    $$ ={ a }_{ 3 }\begin{vmatrix} { b }_{ 1 }\quad  & { b }_{ 2 } \\ { c }_{ 1 } & { c }_{ 2 } \end{vmatrix}-{ b }_{ 3 }\begin{vmatrix} { a }_{ 1 }\quad  & { a }_{ 2 } \\ { c }_{ 1 } & { c }_{ 2 } \end{vmatrix}+{ c }_{ 3 }\begin{vmatrix} { a }_{ 1 }\quad  & { a }_{ 2 } \\ { b }_{ 1 } & { b }_{ 2 } \end{vmatrix}$$

    Is equal to the expansion of $$\triangle $$ along $${ C }_{ 3 }$$
  • Question 8
    1 / -0
    Consider the determinant $$\Delta=\begin{vmatrix}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{vmatrix}$$
    $$M_{ij} =$$ Minor of the element of $$i^{th}$$ row & $$j^{th}$$ column.
    $$C_{ij} =$$ Cofactor of element of $$i^{th}$$ row & $$j^{th}$$ column.
    Value of $$b_1.C_{31} + b_2.C_{32} + b_3.C_{33}$$ is
    Solution
    Value of $${ b }_{ 1 }.{ C }_{ 31 }+{ b }_{ 2 }.C_{ 32 }+b_{ 3 }.{ C }_{ 33 }$$

    $$={ b }_{ 1 }.{ \left( -1 \right)  }^{ 3+1 }\begin{vmatrix} { a }_{ 2 }\quad  & { a }_{ 3 } \\ { b }_{ 2 } & { b }_{ 3 } \end{vmatrix}+{ b }_{ 3 }.{ \left( -1 \right)  }^{ 3+2 }\begin{vmatrix} { a }_{ 1 }\quad  & { a }_{ 3 } \\ { b }_{ 1 } & { b }_{ 3 } \end{vmatrix}+{ b }_{ 3 }.{ \left( -1 \right)  }^{ 3+3 }\begin{vmatrix} { a }_{ 1 }\quad  & { a }_{ 3 } \\ { b }_{ 1 } & { b }_{ 2 } \end{vmatrix}$$

    $$={ b }_{ 1 }\left( { b }_{ 2 }{ a }_{ 3 }-{ a }_{ 2 }{ b }_{ 3 } \right) -{ b }_{ 2 }\left( { b }_{ 1 }{ a }_{ 3 }-{ a }_{ 1 }{ b }_{ 3 } \right) +{ b }_{ 3 }\left( { b }_{ 1 }{ a }_{ 3 }-{ a }_{ 1 }{ b }_{ 2 } \right)$$

    $$=0$$
  • Question 9
    1 / -0
    If $$A=\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$$, then $$A(Adj. A)$$ equals-
    Solution
    $$A=\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$$
    $$adjA=\begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$$
    $$A\left( adjA \right) =\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}\begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}=\begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$$
  • Question 10
    1 / -0
    If $$A=\begin{bmatrix} 1 & -2 & 3 \\ 4 & 0 & -1 \\ -3 & 1 & 5 \end{bmatrix}$$, then $${(adj. A)}_{23}$$ is equal to
    Solution
    $$A=\begin{bmatrix} 1 & -2 & 3 \\ 4 & 0 & -1 \\ -3 & 1 & 5 \end{bmatrix}$$

    $${(adj. A)}_{23}={C}_{32}$$

    So cofactor of $${a}_{32}$$

    $${C}_{32}={(-1)}^{3+2}(-1-12)=13$$

    Ans: A
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now