Self Studies

Determinants Te...

TIME LEFT -
  • Question 1
    1 / -0

    Find the value of $$k$$ for which the points $$ (2, 3), (3, k)$$ and $$(3, 7)$$ are collinear.

  • Question 2
    1 / -0

    If the points $$(a,\,b),\,(3,\,-5)$$ and $$(-5,\,-2)$$ are collinear. Then find the value of $$3a+8b$$

  • Question 3
    1 / -0

    Find the correct option regarding the given points $$(2, -1), (0, 2)$$ and $$(3, 2)$$.

  • Question 4
    1 / -0

    Find the correct option regarding given points $$(2, 2), (1, 2)$$ and $$(3, 1)$$.

  • Question 5
    1 / -0

    Consider the three collinear points $$(3, p), (4, 4)$$ and $$(5, 6)$$. Find the value of $$p$$.

  • Question 6
    1 / -0

    The graph of $$f(x)$$ is shown above in the $$xy$$-plane. The points $$(0,3), (5b, b)$$ and $$(10b, -b)$$ are on the line described by $$f(x)$$. If $$b$$ is a positive constant, find the coordinates of point $$C$$.

  • Question 7
    1 / -0

    If $$A = \begin{bmatrix}3 &5 \\ 2 & 0\end{bmatrix}$$ and $$B = \begin{bmatrix}1 &17 \\ 0 & -10\end{bmatrix}$$, then $$|AB|$$ is equal to

  • Question 8
    1 / -0

    If $$\Delta = \begin{vmatrix} -a & 2b & 0  \\ 0 & -a & 2 b \\ 2b & 0 &-a  \end{vmatrix}=0$$, then

  • Question 9
    1 / -0

    If C = $$2 \cos \theta$$, then the value of the determinant to $$\Delta = \left |\begin{matrix} c & 1 & 0 \\ 1 & c & 1 \\ 6 & 1 & c \end{matrix}\right |$$ is

  • Question 10
    1 / -0

    If A = $$\begin{bmatrix}-8 & 5\\ 2 & 4\end{bmatrix}$$ satisfies the equation $$x^2\, +\, 4x\, -\, p\, =\, 0$$, then p = 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now