Self Studies

Determinants Test - 43

Result Self Studies

Determinants Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the value of $$k$$ for which the points $$ (2, 3), (3, k)$$ and $$(3, 7)$$ are collinear.
    Solution
    If three points are collinear, then the area of the triangle is zero.
    Area of the triangle with vertices $$(x_1,y_1)$$, $$(x_2,y_2)$$ and $$(x_3,y_3)$$ is:
    $$A=\dfrac { 1 }{ 2 } \left| x_{ 1 }(y_{ 2 }-y_{ 3 })+x_{ 2 }(y_{ 3 }-y_{ 1 })+x_{ 3 }(y_{ 1 }-y_{ 2 }) \right|$$
    Here the points are $$(2,3)$$, $$(3,k)$$ and $$(3,7)$$ and it is given that these points are collinear therefore the area is zero that is:
    $$0=\dfrac { 1 }{ 2 } \left| 2(k-7)+3(7-3)+3(3-k) \right| \\ \Rightarrow 0=\left| 2k-14+3(4)+9-3k \right| \\ \Rightarrow 0=\left| -k-5+12 \right| \\ \Rightarrow 0=\left| -k+7 \right| \\ \Rightarrow k-7=0\\ \Rightarrow k=7$$
    Hence, $$k=7$$
  • Question 2
    1 / -0
    If the points $$(a,\,b),\,(3,\,-5)$$ and $$(-5,\,-2)$$ are collinear. Then find the value of $$3a+8b$$
    Solution
    If three points are collinear then the area of the triangle is zero.
    Area of the triangle passing through the points $$(x_1,y_1)$$, $$(x_2,y_2)$$ and $$(x_3,y_3)$$ is given by:
    $$A=\dfrac { 1 }{ 2 } \left| x_{ 1 }(y_{ 2 }-y_{ 3 })+x_{ 2 }(y_{ 3 }-y_{ 1 })+x_{ 3 }(y_{ 1 }-y_{ 2 }) \right|$$ 
    Here the points are $$(a,b)$$, $$(3,-5)$$ and $$(-5,-2)$$ and it is given that these points are collinear therefore the area is zero that is:
    $$A=\dfrac { 1 }{ 2 } \left| a(-5-(-2))+3(-2-b)+(-5)(b-(-5)) \right| \\ \Rightarrow 0=\dfrac { 1 }{ 2 } \left| a(-5+2)+3(-2-b)-5(b+5) \right| \\ \Rightarrow 0=\dfrac { 1 }{ 2 } \left| -3a-6-3b-5b-25 \right| \\ \Rightarrow 0=\dfrac { 1 }{ 2 } \left| -3a-8b-31 \right| \\ \Rightarrow 0=-3a-8b-31\\ \Rightarrow 3a+8b=-31$$
    Hence, $$3a+8b=-31$$.
  • Question 3
    1 / -0
    Find the correct option regarding the given points $$(2, -1), (0, 2)$$ and $$(3, 2)$$.
    Solution

    Area of the triangle with vertices $$(x_1,y_1)$$, $$(x_2,y_2)$$ and $$(x_3,y_3)$$ is:
    $$A=\dfrac { 1 }{ 2 } \left| x_{ 1 }(y_{ 2 }-y_{ 3 })+x_{ 2 }(y_{ 3 }-y_{ 1 })+x_{ 3 }(y_{ 1 }-y_{ 2 }) \right|$$
    Here the points are $$(2,-1)$$, $$(0,2)$$ and $$(3,2)$$, therefore, the area of the triangle is:
    $$A=\dfrac { 1 }{ 2 } \left| 2(2-2)+0(2+1)+3(-1-2) \right| \\ \Rightarrow A=\dfrac { 1 }{ 2 } \left| 2(0)+0(3)+3(-3) \right| \\ \Rightarrow A=\dfrac { 1 }{ 2 } \left| -9 \right| \\ \Rightarrow A=\dfrac { 9 }{ 2 } \neq 0$$
    Since the area of the triangle is not zero,
    Hence, the points are non-collinear.
  • Question 4
    1 / -0
    Find the correct option regarding given points $$(2, 2), (1, 2)$$ and $$(3, 1)$$.
    Solution

    Area of the triangle with vertices $$(x_1,y_1)$$, $$(x_2,y_2)$$ and $$(x_3,y_3)$$ is:
    $$A=\dfrac { 1 }{ 2 } \left| x_{ 1 }(y_{ 2 }-y_{ 3 })+x_{ 2 }(y_{ 3 }-y_{ 1 })+x_{ 3 }(y_{ 1 }-y_{ 2 }) \right|$$
    Here the points are $$(2,2)$$, $$(1,2)$$ and $$(3,1)$$, therefore the area of the triangle is:
    $$A=\dfrac { 1 }{ 2 } \left| 2(2-1)+1(1-2)+3(2-2) \right| \\ \Rightarrow A=\dfrac { 1 }{ 2 } \left| 2(1)+1(-1)+3(0) \right| \\ \Rightarrow A=\dfrac { 1 }{ 2 } \left| 2-1 \right| \\ \Rightarrow A=\dfrac { 1 }{ 2 } \neq 0$$
    Since the area of the triangle is not zero,
    Hence, the points are non-collinear.
  • Question 5
    1 / -0
    Consider the three collinear points $$(3, p), (4, 4)$$ and $$(5, 6)$$. Find the value of $$p$$.
    Solution
    If three points are collinear then the area of the triangle is zero.
    Area of the triangle with vertices $$(x_1,y_1)$$, $$(x_2,y_2)$$ and $$(x_3,y_3)$$ is:
    $$A=\dfrac { 1 }{ 2 } \left| x_{ 1 }(y_{ 2 }-y_{ 3 })+x_{ 2 }(y_{ 3 }-y_{ 1 })+x_{ 3 }(y_{ 1 }-y_{ 2 }) \right|$$
    Here the points are $$(3,p)$$, $$(4,4)$$ and $$(5,6)$$ and it is given that these points are collinear, therefore the area is zero that is:
    $$0=\dfrac { 1 }{ 2 } \left| 3(4-6)+4(6-p)+5(p-4) \right| \\ \Rightarrow 0=\left| 3(-2)+24-4p+5p-20 \right| \\ \Rightarrow 0=\left| -6+p+4 \right| \\ \Rightarrow 0=\left| p-2 \right| \\ \Rightarrow p-2=0\\ \Rightarrow p=2$$
    Hence, $$p=2$$
  • Question 6
    1 / -0
    The graph of $$f(x)$$ is shown above in the $$xy$$-plane. The points $$(0,3), (5b, b)$$ and $$(10b, -b)$$ are on the line described by $$f(x)$$. If $$b$$ is a positive constant, find the coordinates of point $$C$$.

    Solution
    In given figure the line goes to point $$A(0,3) ,B(5b,b)$$ and $$C(10b,-b)$$
    Then slope of line goes at point $$A(0,3)$$ and $$B(5b,b)=$$ $$\dfrac{b-3}{5b-0}=\dfrac{b-3}{5b}$$
    And slope of line goes at point $$B(5b,b)$$ and $$C(10b,-b)=$$ $$\dfrac{-b-b}{10b-5b}=\dfrac{-2b}{5b}$$
    Then given line is a st reline then both slopes are equal
    $$\therefore \dfrac{b-3}{5b}=\frac{-2b}{5b }$$
    $$\Rightarrow -2b=b-3$$
    $$\Rightarrow -3b=-3$$
    $$\Rightarrow b=1$$
    Put the value of $$b=1$$ in point C
    We get $$C=(10,-1)$$
  • Question 7
    1 / -0
    If $$A = \begin{bmatrix}3 &5 \\ 2 & 0\end{bmatrix}$$ and $$B = \begin{bmatrix}1 &17 \\ 0 & -10\end{bmatrix}$$, then $$|AB|$$ is equal to
    Solution
    Given, $$A = \begin{bmatrix}3 &5 \\ 2 & 0\end{bmatrix}$$ and $$B = \begin{bmatrix}1 &17 \\ 0 & -10\end{bmatrix}$$
    Therefore, $$ AB = \begin{bmatrix}3 &5 \\ 2 & 0\end{bmatrix}\begin{bmatrix}1 &17 \\ 0 & -10\end{bmatrix}$$
    $$= \begin{bmatrix}3 + 0 &51 - 50 \\ 2 + 0 & 34 - 0\end{bmatrix} = \begin{bmatrix}3 &1 \\ 2 & 34\end{bmatrix}$$
    $$\Rightarrow |AB| = \begin{vmatrix}1 & 1\\ 2 & 34\end{vmatrix}$$
    $$= 102 - 2$$
    $$= 100$$
  • Question 8
    1 / -0
    If $$\Delta = \begin{vmatrix} -a & 2b & 0  \\ 0 & -a & 2 b \\ 2b & 0 &-a  \end{vmatrix}=0$$, then
    Solution
    $$\begin{vmatrix} -a & 2b & 0  \\ 0 & -a & 2 b \\ 2b & 0 &-a  \end{vmatrix}=0$$

    $$\Rightarrow -a(a^2-0)-2b(0-4b^2)=0$$, Expand along 1st row

    $$\Rightarrow -a^2+8b^3=0\Rightarrow \left(\dfrac{a}{b}\right)^3=8$$

    $$\Rightarrow \dfrac{a}{b}$$ is a cube root of $$8$$
  • Question 9
    1 / -0
    If C = $$2 \cos \theta$$, then the value of the determinant to $$\Delta = \left |\begin{matrix} c & 1 & 0 \\ 1 & c & 1 \\ 6 & 1 & c \end{matrix}\right |$$ is
    Solution
    $$C=2\cos { \theta  } $$
    $$\triangle =\begin{vmatrix} C & 1 & 0 \\ 1 & C & 1 \\ 6 & 1 & C \end{vmatrix}$$
    $$\triangle =C\left( { C }^{ 2 }-1 \right) -1\left( C-6 \right) $$
    $$\triangle ={ C }^{ 3 }-2C+6$$
    $$C=2\cos { \theta  } $$
    $$\Rightarrow \triangle ={ \left( 2\cos { \theta  }  \right)  }^{ 3 }-\left( 2\cos { \theta  }  \right) 2+6$$
    $$\Rightarrow \triangle =8\cos ^{ 2 }{ \theta  } -4\cos { \theta  } +6$$
  • Question 10
    1 / -0
    If A = $$\begin{bmatrix}-8 & 5\\ 2 & 4\end{bmatrix}$$ satisfies the equation $$x^2\, +\, 4x\, -\, p\, =\, 0$$, then p = 
    Solution
    $$A= \begin{bmatrix}-8&5\\2&4\end{bmatrix}$$

    $$A^2=\begin{bmatrix}-8&5\\2&4\end{bmatrix}\begin{bmatrix}-8&5\\2&4\end{bmatrix}=\begin{bmatrix}64+10&-40+20\\-16+8&10+16\end{bmatrix}=\begin{bmatrix}74&-20\\-8&26\end{bmatrix}$$

    $$4A=\begin{bmatrix}-32&20\\8&16\end{bmatrix}$$

    $$P=x^2+4x$$ and $$A$$ satisfies this equation

    $$So, P=\begin{bmatrix}74&-20\\-8&26\end{bmatrix}+\begin{bmatrix}-32&20\\8&16\end{bmatrix}$$

    $$=\begin{bmatrix}42&0\\0&42\end{bmatrix}$$

    $$=42\begin{bmatrix}1&0\\0&1\end{bmatrix}$$

    $$=42I$$

    $$=42$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now