Self Studies

Determinants Test - 50

Result Self Studies

Determinants Test - 50
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\Delta_1=\begin{vmatrix} x & b & b\\ a & x & b\\ a & a & x\end{vmatrix}$$ and $$\Delta_2=\begin{vmatrix} x & b\\ a & x\end{vmatrix}$$ are the given determinants, then.
    Solution

  • Question 2
    1 / -0
    If a, b, c are different and $$\begin{vmatrix} 0 & x-a & x-b \\ x+a & 0 & x-c\\ x+b & x+c & 0\end{vmatrix}=0$$, then x is equal to.
    Solution

  • Question 3
    1 / -0
    If $$\left |\begin{array}{111}6i & -3i & 1 \\4 & 3i & -1 \\20 & 3 & i \\\end {array}\right | =x+iy$$, then
    Solution
    $$\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3 i & -1 \\ 20 & 3 & i \end{vmatrix}$$
    $$\Rightarrow 6i((3i. i) - (-3)) + 3i (4 . i + 20) + 1 (12 - 60 i)$$
    $$\Rightarrow 6i (-3 + 3) + 12 (-1) + 60 i + 12 - 60 i$$
    $$\Rightarrow 0$$                 $$[\because i^2 = -1]$$
    $$x + i y = 0 + i(0)$$
    $$x = 0 , y = 0$$
  • Question 4
    1 / -0
    If A = $$\begin{bmatrix}
                  a & 0 & 0 \\[0.3em]
                  0 & a & 0 \\[0.3em]
                  0 & 0 & a
                  \end{bmatrix}$$, then the value of |A| |Adj. A|
    Solution
    As$$|A|=(a)^3$$

    $$|A|(Adj. A) = |A|$$ $$\begin{bmatrix}
                  a & 0 & 0 \\[0.3em]
                  0 & a & 0 \\[0.3em]
                  0 & 0 & a
                  \end{bmatrix}$$

    =$$\begin{bmatrix}
                  |A| & 0 & 0 \\[0.3em]
                  0 & |A| & 0 \\[0.3em]
                  0 & 0 & |A|
                  \end{bmatrix}$$ where $$|A|$$ = $$a^3$$

    Take determinant of both sides

    |A|. |Adj. A| =$$\begin{vmatrix}
                  |A| & 0 & 0 \\[0.3em]
                  0 & |A| & 0 \\[0.3em]
                  0 & 0 & |A|
                  \end{vmatrix} |A|^3 = (a^3)^3 = a^9$$
  • Question 5
    1 / -0
    If $$f(x) =$$ $$
    \left |
    \begin{array}{111}
    1 & x & x+1 \\
    2x & x(x-1) & (x+1)x \\
    3x(x-1) & x(x-1)(x-2) & (x+1)x(x-1) \\
    \end {array}
    \right |
    $$
    then f(100) is equal to
    Solution
    $$f(x) = \begin{vmatrix} 1 & x & x + 1 \\ 2x & x(x - 1) & (x + 1)x \\ 3x(x -1) & x(x - 1) (x - 2) & (x + 1) x(x - 1) \end{vmatrix}$$
    $$x \times x \times (x - 1) \, \begin{vmatrix} 1 & x & x + 1 \\ 2 & x - 1  & x + 1 \\ 3 & x - 2 & x + 1 \end{vmatrix}$$
    $$x^2 (x - 1)(x + 1) \, \begin{vmatrix} 1 & x & 1 \\ 2 & x - 1 & 1 \\ 3 & x - 2 & 1 \end{vmatrix}$$
    operating : $$R_1 \rightarrow R_2 - R_1$$ & $$R_2 \rightarrow R_3 - R_2$$
    $$x^2 (x^2 - 1) \, \begin{vmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ 3 & x - 2 & 1 \end{vmatrix}$$
    As two rows of the determinant is zero 
    $$\therefore$$ Determinant $$= 0$$
    Hence, $$\boxed {f(x) = 0}$$
    $$\therefore$$ for any value of $$x ;\ f(x) = 0$$
    Hence, $$\boxed {f(100) = 0}$$
  • Question 6
    1 / -0
    If A = $$\begin{bmatrix}
                  a & 0 & 0 \\[0.3em]
                  0 & a & 0 \\[0.3em]
                  0 & 0 & a
                  \end{bmatrix}$$, then the value of  |Adj. A| is equal to
    Solution
    A(Adj. A) = |A| $$I_3$$ = |A| $$\begin{bmatrix}
                  1 & 0 & 0 \\[0.3em]
                  0 & 1 & 0 \\[0.3em]
                  0 & 0 & 1
                  \end{bmatrix}$$
    =$$\begin{bmatrix}
                  |A| & 0 & 0 \\[0.3em]
                  0 & |A| & 0 \\[0.3em]
                  0 & 0 & |A|
                  \end{bmatrix}$$ where |A| = $$a^3$$
    Take determinant of both sides
    |A|. |Adj. A| =$$\begin{vmatrix}
                  |A| & 0 & 0 \\[0.3em]
                  0 & |A| & 0 \\[0.3em]
                  0 & 0 & |A|
                  \end{vmatrix} |A|^3 =|Adj. A| = |A|^{n-1} = |A|^2 = a^6$$
  • Question 7
    1 / -0
    If A = $$ \begin{bmatrix} \alpha & 2 \\ 2 & \alpha\end{bmatrix}$$ and | A$$^3$$ | = 125 then $$\alpha$$ is 
    Solution
    $$A = \begin{bmatrix} \alpha & 2 \\ 2 & \alpha \end{bmatrix}$$.    $$|A^3| = 125$$
    $$|A| = \alpha^2 - 4$$
    we know by properties of determinants that
    $$|A^3| = |A|^3$$
    $$\Rightarrow \ (\alpha^2 - 4)^3 = 125$$
    $$\Rightarrow \ \alpha^2 - 4 = 5$$
    $$\Rightarrow \ a^2 = 9$$
    $$\Rightarrow \ \boxed {\alpha = \pm 3}$$
    Hence, option $$(C)$$ is correct 
  • Question 8
    1 / -0
    If the points $$(-2, -5), (2, -2), (8, a)$$ are collinear, then the value of $$a$$ is ________.
    Solution
    If three points are collinear, then the slope of the line joining the first two points is equal to that of the last two.

    Apply the slope formula $$\dfrac{(y2-y1)}{(x2-x1).}$$

    If collinear then
    $$\dfrac { -2+5 }{ 2+2 } =\dfrac { a+2 }{ 6 } \\ \dfrac { 9 }{ 2 } =a+2\\ a=\dfrac { 5 }{ 2 } $$
  • Question 9
    1 / -0
    If $$ \begin{vmatrix}a & a & x \\ m & m & m \\b & x & b\end{vmatrix}=0$$  then $$x$$ is:
    Solution
    Given $$\begin{vmatrix} a & a & x \\ m & m & m \\ b & x & b \end{vmatrix}=0$$

    Expanding the determinant we get

    $$a(mb-mx)-a(mb-mb)+x(mx-mb)=0\\ \Rightarrow a(mb-mx)-x(mb-mx)=0\\ \Rightarrow (a-x)(mb-mx)=0\\ \Rightarrow (a-x)(b-x)=0$$

    The solution for this quadratic equation is either $$x=a$$ or $$x=b$$
  • Question 10
    1 / -0
    The points $$(-a, -b), (0, 0), (a, b)$$ $$(a^2,ab)$$  are 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now