Self Studies

Determinants Te...

TIME LEFT -
  • Question 1
    1 / -0

    Let $$\Delta =$$$$\begin{vmatrix} sin\theta cos \phi & sin\theta sin\phi & cos\theta \\ cos\theta cos\phi & cos\theta sin\phi & -sin\theta \\ -sin\theta sin\phi & sin\theta cos\phi & 0\end{vmatrix}$$, then

  • Question 2
    1 / -0

    $$\begin{vmatrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \end{vmatrix}=$$

  • Question 3
    1 / -0

    If the system of equations of $$3x-2y+z=0, kx-14y+15z=0,x+2y+3z=0$$ has non trivial solution then $$k=$$

  • Question 4
    1 / -0

    $$A=\left[ \begin{matrix} 5 & 5\alpha  & \alpha  \\ 0 & \alpha  & 5\alpha  \\ 0 & 0 & 5 \end{matrix} \right] $$; If $$\left| { A }^{ 2 } \right| =25$$, then $$\left| \alpha  \right| =$$

  • Question 5
    1 / -0

    If $$f(x) = \left|
    \begin{array}{111}
    x-3 & 2x^2 -18 & 3x^3 -81\\
    x-5 & 2x^2-50 & 4x^3-500\\
    1 & 2 & 3 \\
    \end {array}
    \right|
    $$ then $$f(1). f(3) + f(3) .f(5) + f(5) .f(1)$$ is equal to-

  • Question 6
    1 / -0

    The points $$({X}_{1},{Y}_{1})$$, $$({X}_{2},{Y}_{2})$$, $$({X}_{1},{Y}_{2})$$ and $$({X}_{2},{Y}_{1})$$ are always

  • Question 7
    1 / -0

    $$\begin{vmatrix}\dfrac{1}{a} &bc &a^2 \\ \dfrac{1}{b} &ca & b^2\\ \dfrac{1}{c} & ab & c^2\end{vmatrix}$$ is equal to -

  • Question 8
    1 / -0

    $$\begin{vmatrix} log e & log e^2 & log e^3\\ log e^2 & log e^3 & log e^4\\ log e^3 & log e^4 & log e^5\end{vmatrix}=$$?

  • Question 9
    1 / -0

    If $$ \begin{vmatrix} \lambda^2 + 3 \lambda & \lambda -1 & \lambda +3 \\ \lambda + 1 & 2- \lambda & \lambda - 4 \\ \lambda-3 & \lambda + 4 & 3 \lambda \end{vmatrix} = p \lambda^4 + q \lambda^3 + r \lambda^2 + s \lambda + t $$ then $$ t = $$

  • Question 10
    1 / -0

    $$\begin{vmatrix} a + x& a - x & a - x\\ a - x & a + x & a - x\\ a - x & a - x & a + x\end{vmatrix} = 0$$ then $$x$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now