Self Studies

Determinants Test - 52

Result Self Studies

Determinants Test - 52
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$\Delta =$$$$\begin{vmatrix} sin\theta cos \phi & sin\theta sin\phi & cos\theta \\ cos\theta cos\phi & cos\theta sin\phi & -sin\theta \\ -sin\theta sin\phi & sin\theta cos\phi & 0\end{vmatrix}$$, then
    Solution
    $$\triangle = \begin{vmatrix} \sin \theta . \cos \phi & \sin \theta . \sin \phi & \cos \theta \\ \cos \theta . \cos \phi & \cos \theta . \sin \theta  & -\sin \theta  \\ -\sin \theta. \sin \theta  & \sin \theta . \cos \phi & 0 \end{vmatrix}$$
    $$= \sin \theta . \sin \phi (\sin^{2} \theta . \cos \theta) - \cos \theta (- \sin \theta . \cos \theta . \cos \theta)- \sin \theta . \sin \phi (- \sin^{2} \theta. \sin \phi - \cos^{2} \theta- \sin \theta)$$
    $$=\sin^{3} \theta . \sin \phi. \cos \phi+ \cos^{2} \theta. \sin \theta. \cos^{2} \phi+ \sin^{3} \theta. \sin^{2} \phi + \sin \theta . \cos^{2} \theta . \sin^{2} \phi$$
    So, We can say that $$\triangle $$ is depend $$d$$ on both.
    $$\theta $$ and $$\phi$$
  • Question 2
    1 / -0
    $$\begin{vmatrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \end{vmatrix}=$$
    Solution
    $$\begin{vmatrix} 1 & bc & ab+ac \\ 1 & ca & ba+bc \\ 1 & ab & ca+cb \end{vmatrix}$$
    $$\begin{vmatrix} 1 & bc & ab+bc+ac \\ 1 & ca & ab+bc+ca \\ 1 & ab & ab+bc+ca \end{vmatrix}$$
    $$=(ab+bc+ca)\begin{vmatrix} 1 & bc & 1 \\ 1 & ca & 1 \\ 1 & ab & 1 \end{vmatrix}$$
    $$=0$$
  • Question 3
    1 / -0
    If the system of equations of $$3x-2y+z=0, kx-14y+15z=0,x+2y+3z=0$$ has non trivial solution then $$k=$$
    Solution
    According to the given information

    $$\Rightarrow \begin{vmatrix} 3&-2&1\\k&-14&15\\1&2&3 \end{vmatrix}=0$$

    $$\Rightarrow 3(-42-30)+2(3k-15)+1(2k+14)=0$$

    $$\Rightarrow -216+6k-30+2k+14=0$$

    $$\Rightarrow 8k=232$$

    $$\Rightarrow k=29$$
  • Question 4
    1 / -0
    $$A=\left[ \begin{matrix} 5 & 5\alpha  & \alpha  \\ 0 & \alpha  & 5\alpha  \\ 0 & 0 & 5 \end{matrix} \right] $$; If $$\left| { A }^{ 2 } \right| =25$$, then $$\left| \alpha  \right| =$$
    Solution
    $$A=\begin{bmatrix} 5 & 5\alpha & \alpha\\ 0 & \alpha & 5\alpha\\ 0 & 0 & 5\end{bmatrix}$$
    $$A^2=\begin{bmatrix} 5 & 5\alpha & \alpha\\ 0 & \alpha & 5\alpha\\ 0 & 0 & 5\end{bmatrix}\begin{bmatrix} 5 & 5\alpha & \alpha\\ 0 & \alpha & 5\alpha\\ 0 & 0 & 5\end{bmatrix}=\begin{bmatrix} 25 & 30\alpha & 25\alpha^2+10\alpha\\ 0 & \alpha^2 & 5\alpha^2+25\alpha\\ 0 & \alpha^2 & 5\alpha^2 +25\alpha\\ 0 & 0 & 25\end{bmatrix}$$
    $$|A^2|=25$$
    $$25\begin{vmatrix} \alpha^2 & 5\alpha^2+25\alpha\\ 0 & 25\end{vmatrix} -30\alpha \begin{vmatrix} 0 & 5\alpha^2+25\alpha\\ 0 & 25\end{vmatrix} +25\alpha^2+10\alpha\begin{vmatrix} 0 & \alpha^2\\ 0 & 0\end{vmatrix}=25$$
    $$25\times 25\alpha^2=25$$
    $$25\alpha^2=1$$
    $$\alpha =\dfrac{1}{5}$$.
  • Question 5
    1 / -0
    If $$f(x) = \left|
    \begin{array}{111}
    x-3 & 2x^2 -18 & 3x^3 -81\\
    x-5 & 2x^2-50 & 4x^3-500\\
    1 & 2 & 3 \\
    \end {array}
    \right|
    $$ then $$f(1). f(3) + f(3) .f(5) + f(5) .f(1)$$ is equal to-
    Solution
    $$f(x)=\begin{vmatrix} x-3 & \quad \quad \quad { 2x }^{ 2 }-18 & \quad \quad \quad { 3x }^{ 3 }-81 \\ x-5 & { \quad \quad \quad 2x }^{ 2 }-50 & \quad \quad \quad { 4x }^{ 2 }-500 \end{vmatrix}$$

    Now $$f(3)=\begin{vmatrix} 3-3 & \quad \quad { 2x3 }^{ 2 }-18 & \quad \quad { 3x3 }^{ 2 }-81 \\ 3-5 & \quad \quad { 2x3 }^{ 2 }-50 & \quad \ { 3 }^{ 3 }-500 \\ 1 & 2 & 3 \end{vmatrix}$$

    $$=0$$
    Also , $$f(5)=0$$
    Hence, $$f(1), f(3) + f(3), f(3)+f(3)+f(5), f(1)$$
    $$=0$$
    $$f(3)$$






























  • Question 6
    1 / -0
    The points $$({X}_{1},{Y}_{1})$$, $$({X}_{2},{Y}_{2})$$, $$({X}_{1},{Y}_{2})$$ and $$({X}_{2},{Y}_{1})$$ are always
    Solution

    As all the points lie on the same line this implies that area of the triangle formed by the points is zero.

    So,using area formula in determinant form

    $${ X }_{ 1 }∗({ Y }_{ 2 }−{ Y }_{ 3 })−{ X }_{ 2 }∗({ Y }_{ 1 }−{ Y }_{ 3 })+{ X }_{ 3 }∗({ Y }_{ 1 }−{ Y }_{ 2 })=0$$

    $${ X }_{ 1 }∗({ Y }_{ 2 }−{ Y }_{ 3 })+{ X }_{ 2 }∗({ Y }_{ 3 }−{ Y }_{ 1 })+{ X }_{ 3 }∗({ Y }_{ 1 }−{ Y }_{ 2 })=0$$

    Now,divide both sides by $$ { X }_{ 1 }∗{ X }_{ 2 }∗{ X }_{ 3 }$$

    $$({ Y }_{ 2 }−{ Y }_{ 3 })+{ X }_{ 2 }∗({ Y }_{ 3 }−{ Y }_{ 1 })+{ X }_{ 3 }∗({ Y }_{ 1 }−{ Y }_{ 2 })=0$$

    $$\dfrac { { Y }_{ 2 }−{ Y }_{ 3 } }{ { X }_{ 2 }−{ X }_{ 3 } } +\dfrac { { Y }_{ 3 }−{ Y }_{ 1 } }{ { X }_{ 3 }−{ X }_{ 1 } } +\dfrac { { Y }_{ 1 }−{ Y }_{ 2 } }{ { X }_{ 1 }−{ X }_{ 2 } } =0$$

    Its collinear.

  • Question 7
    1 / -0
    $$\begin{vmatrix}\dfrac{1}{a} &bc &a^2 \\ \dfrac{1}{b} &ca & b^2\\ \dfrac{1}{c} & ab & c^2\end{vmatrix}$$ is equal to -
    Solution

  • Question 8
    1 / -0
    $$\begin{vmatrix} log e & log e^2 & log e^3\\ log e^2 & log e^3 & log e^4\\ log e^3 & log e^4 & log e^5\end{vmatrix}=$$?
    Solution
    $$\begin{vmatrix} \log { e }  & \log { { e }^{ 2 } }  & \log { e^{ 3 } }  \\ \log { { e }^{ 2 } }  & \log { { e }^{ 3 } }  & \log { e^{ 4 } }  \\ \log { e^{ 3 } }  & \log { { e }^{ 4 } }  & \log { { e }^{ 3 } }  \end{vmatrix}$$

    $$\begin{vmatrix} \log { e }  & 2\log { e }  & 3\log { e }  \\ 2\log { e }  & 3\log { e }  & 4\log { e }  \\ 3\log { e }  & 4\log { e }  & 5\log { e }  \end{vmatrix}$$

    $${ \left( \log { e }  \right)  }^{ 3 }\begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix}\xrightarrow [ { R }_{ 2 }\rightarrow { R }_{ 2 }-{ R }_{ 3 } ]{ { R }_{ 1 }\rightarrow { R }_{ 1 }-{ R }_{ 2 } } $$

    $${ \left( \log { e }  \right)  }^{ 3 }\begin{vmatrix} 1- & -1 & -1 \\ -1 & -1 & -1 \\ 3 & 4 & 5 \end{vmatrix}=0$$ ($$\because $$ two rowa are same)
  • Question 9
    1 / -0
    If $$ \begin{vmatrix} \lambda^2 + 3 \lambda & \lambda -1 & \lambda +3 \\ \lambda + 1 & 2- \lambda & \lambda - 4 \\ \lambda-3 & \lambda + 4 & 3 \lambda \end{vmatrix} = p \lambda^4 + q \lambda^3 + r \lambda^2 + s \lambda + t $$ then $$ t = $$
    Solution
    To get $$t$$,

    Put  $$\lambda=0$$

    We get, value of determinant as,

    $$[0(0+16)+1(0-12)+3(4+6)]=t$$

    =>   $$t=18$$
  • Question 10
    1 / -0
    $$\begin{vmatrix} a + x& a - x & a - x\\ a - x & a + x & a - x\\ a - x & a - x & a + x\end{vmatrix} = 0$$ then $$x$$ is
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now