Self Studies

Determinants Te...

TIME LEFT -
  • Question 1
    1 / -0

    In a triangle ABC, with usual notations, if $$\begin{vmatrix} 1 & a & b \\ 1 & c & a \\ 1 & b & c \end{vmatrix}=0,$$ then $$4sin^2A+24sin^2B+36sin^2C$$ is equal to 

  • Question 2
    1 / -0

    If adj $$A=\begin{bmatrix}20 & -20 \\ 10 & 10 \end{bmatrix}$$ , then $$|A|=$$..... 

  • Question 3
    1 / -0

    Sum of the real roots of the equation $$\begin{vmatrix} 1 & 4 & 20\\ 1 & -2 & 5 \\ 1 & 2x & 5{x}^{2} \end{vmatrix}=0$$ is

  • Question 4
    1 / -0

    Let $$\omega =-\dfrac {1}{2}+i\dfrac {\sqrt {3}}{2}$$. Then the value of the determinant.
    $$\begin{vmatrix} 1 & 1 & 1 \\ 1 & -1-{ \omega  }^{ 2 } & { \omega  }^{ 2 } \\ 1 & { \omega  }^{ 2 } & { \omega  }^{ 2 } \end{vmatrix}$$ is

  • Question 5
    1 / -0

    The determinant $$\begin{bmatrix} b_{1}+c_{1} & c_{1}+a_{1} & a_{1}+b_{1} \\ b_{2}+c_{2} & c_{2}+a_{2} & a_{2}+b_{2} \\ b_{3}+c_{3} & c_{3}+a_{3} & a_{3}+b_{3}\end{bmatrix}=$$_____

  • Question 6
    1 / -0

    Find the values of $$x$$ if, $$\left| \begin{matrix} 1 & 4 & 20 \\ 1 & -2 & 5 \\ 1 & 2x & 5x^{ 2 } \end{matrix} \right| =0$$

  • Question 7
    1 / -0

    29 If $$z=\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$ where 0, I are 2x2 null and identity matrix then det $$\left( \left[ z \right]  \right) $$ is  _______________.

  • Question 8
    1 / -0

    The cofactor of the element $$4$$ in the determinant $$\begin{vmatrix} 1 & 3 & 5 & 1\\ 2 & 3 & 4 & 2\\ 8 & 0 & 1 & 1\\ 0 & 2 & 1 & 1\end{vmatrix}$$ is?

  • Question 9
    1 / -0

    If $$\Delta =\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y \end{vmatrix}$$ for $$x \neq 0, y \neq 0$$, then $$\Delta $$ is 

  • Question 10
    1 / -0

    The number of distinct real roots of the equation,$$\left| \begin{matrix} cosx & sinx & sinx \\ sinx & cosx & sinx \\ sinx & sinx & cosx \end{matrix} \right| =0$$In t interval $$\left[ -\dfrac { \pi  }{ 4 } \dfrac { \pi  }{ 4 }  \right]$$ is/are:

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now