Self Studies

Determinants Test - 55

Result Self Studies

Determinants Test - 55
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In a triangle ABC, with usual notations, if $$\begin{vmatrix} 1 & a & b \\ 1 & c & a \\ 1 & b & c \end{vmatrix}=0,$$ then $$4sin^2A+24sin^2B+36sin^2C$$ is equal to 
    Solution
    $$\begin{vmatrix} 1 & a & b \\ 1 & c & a \\ 1 & b & c \end{vmatrix} = 0$$
    using $$R_2 \rightarrow R_2 - R_1$$ and $$R_3 \rightarrow R_3 - R_1$$ property.
    $$\Rightarrow \begin{vmatrix} 1 & a & b \\ 0 & c-a & a-b \\ 0 & b-a & c-b \end{vmatrix} = 0$$
    Expanding along first column.
    $$\Rightarrow 1[(c -a ) (c - b) - (b - a)(a - b)] + 0 = 0$$
    $$\Rightarrow c^2 - ac - bc + ab - (ab - a^2 - b^2 + ab) = 0$$
    $$\Rightarrow c^2 - ac - bc + ab - ab + a^2 + b^2 - ab = 0$$
    $$\Rightarrow a^2 + b^2 + c^2 - ab - bc - ca = 0$$
    using identify 
    $$a^2 + b^2 + c^2 - ab - bc - ca = \dfrac{1}{2}\left [(a - b)^2  + (b - c)^2 + (c- a)^2\right]$$
    $$\Rightarrow \dfrac{1}{2} [(a - b)^2 + (b - c)^2 + (c - a)^2] = 0$$
    It us only possible if $$a + b = c$$
    $$\Rightarrow $$ Triangle is equilateral 
    $$\Rightarrow \angle A = \angle B = \angle C = 60^{\circ}$$
    $$\Rightarrow 4 \sin^2 A + 24 \sin^2 B + 36 \sin^2 c$$
    $$= 4 \sin^2 60^{\circ} + 24 \sin^2 60^{\circ} + 36 \sin^2 60^{\circ}$$
    $$= 64 \sin^2 60^{\circ} = 64 \times \left(\dfrac{\sqrt{3}}{2} \right)^2$$
    $$= 64 \times \dfrac{3}{4}$$
    $$= 48$$
  • Question 2
    1 / -0
    If adj $$A=\begin{bmatrix}20 & -20 \\ 10 & 10 \end{bmatrix}$$ , then $$|A|=$$..... 
    Solution

  • Question 3
    1 / -0
    Sum of the real roots of the equation $$\begin{vmatrix} 1 & 4 & 20\\ 1 & -2 & 5 \\ 1 & 2x & 5{x}^{2} \end{vmatrix}=0$$ is
    Solution

  • Question 4
    1 / -0
    Let $$\omega =-\dfrac {1}{2}+i\dfrac {\sqrt {3}}{2}$$. Then the value of the determinant.
    $$\begin{vmatrix} 1 & 1 & 1 \\ 1 & -1-{ \omega  }^{ 2 } & { \omega  }^{ 2 } \\ 1 & { \omega  }^{ 2 } & { \omega  }^{ 2 } \end{vmatrix}$$ is
    Solution
    $$\left| \begin{matrix} 1 & 1 & 1 \\ 1 & -1-{ \omega  }^{ 2 } & { \omega  }^{ 2 } \\ 1 & { \omega  }^{ 2 } & { \omega  }^{ 2 } \end{matrix} \right| \\ $$
    $$\Rightarrow R_1=R_1-R_3$$
    $$\Rightarrow \left| \begin{matrix} 0 & 1-{ \omega  }^{ 2 } & 1-{ \omega  }^{ 2 } \\ 1 & -1-{ \omega  }^{ 2 } & { \omega  }^{ 2 } \\ 1 & { \omega  }^{ 2 } & { \omega  }^{ 2 } \end{matrix} \right| \\ $$
    $$\Rightarrow C_2=C_2-C_3$$
    $$\Rightarrow \left| \begin{matrix} 0 & 0 & 1-{ \omega  }^{ 2 } \\ 1 & -1-2{ \omega  }^{ 2 } & { \omega  }^{ 2 } \\ 1 & 0 & { \omega  }^{ 2 } \end{matrix} \right| \\ $$
    $$Det=(1-\omega^2)\times[1\times0+(1+2\omega^2)]\\ \quad=(1-\omega^2)[(1+\omega^2)+\omega^2]\\ \quad=(1-\omega^4)+\omega^2(1-\omega^2)\\ \quad=1-\omega+\omega^2-\omega^4\\ \quad=1-\omega+\omega^2-\omega\\ \quad=1+\omega^2-2\omega\\ \quad=-3\omega$$
  • Question 5
    1 / -0
    The determinant $$\begin{bmatrix} b_{1}+c_{1} & c_{1}+a_{1} & a_{1}+b_{1} \\ b_{2}+c_{2} & c_{2}+a_{2} & a_{2}+b_{2} \\ b_{3}+c_{3} & c_{3}+a_{3} & a_{3}+b_{3}\end{bmatrix}=$$_____
  • Question 6
    1 / -0
    Find the values of $$x$$ if, $$\left| \begin{matrix} 1 & 4 & 20 \\ 1 & -2 & 5 \\ 1 & 2x & 5x^{ 2 } \end{matrix} \right| =0$$
    Solution

  • Question 7
    1 / -0
    29 If $$z=\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$ where 0, I are 2x2 null and identity matrix then det $$\left( \left[ z \right]  \right) $$ is  _______________.
    Solution

  • Question 8
    1 / -0
    The cofactor of the element $$4$$ in the determinant $$\begin{vmatrix} 1 & 3 & 5 & 1\\ 2 & 3 & 4 & 2\\ 8 & 0 & 1 & 1\\ 0 & 2 & 1 & 1\end{vmatrix}$$ is?
  • Question 9
    1 / -0
    If $$\Delta =\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y \end{vmatrix}$$ for $$x \neq 0, y \neq 0$$, then $$\Delta $$ is 
    Solution
    ANSWER IS B

  • Question 10
    1 / -0
    The number of distinct real roots of the equation,$$\left| \begin{matrix} cosx & sinx & sinx \\ sinx & cosx & sinx \\ sinx & sinx & cosx \end{matrix} \right| =0$$In t interval $$\left[ -\dfrac { \pi  }{ 4 } \dfrac { \pi  }{ 4 }  \right]$$ is/are:
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now