Self Studies

Determinants Te...

TIME LEFT -
  • Question 1
    1 / -0

    If $$\alpha, \beta$$ are the roots of $$x^2+x+1=0$$ then $$\begin{vmatrix} y+1 & \beta & \alpha\\ \beta & y+\alpha & 1\\ \alpha & 1 & y+\beta\end{vmatrix}=?$$

  • Question 2
    1 / -0

    $$\begin{vmatrix} \sin ^{ 2 }{ \theta  }  & \cos ^{ 2 }{ \theta  }  \\ -\cos ^{ 2 }{ \theta  }  & \sin ^{ 2 }{ \theta  }  \end{vmatrix}=$$

  • Question 3
    1 / -0

    The sum of the real roots of the equation
    $$\begin{vmatrix} x & -6 & -1 \\ 2 & -3x & x-3 \\ -3 & 2x & x+2 \end{vmatrix}=0$$ is equal to

  • Question 4
    1 / -0

    $$\begin{vmatrix} a+ib & c+id \\ -c+id & a-ib \end{vmatrix}=$$?

  • Question 5
    1 / -0

    For square matrices $$A$$ and $$B$$ of the same order, we have $$adj (AB) = ?$$

  • Question 6
    1 / -0

    $$\begin{vmatrix} \cos { { 70 }^{ o } }  & \sin { { 20 }^{ o } }  \\ \sin { { 70 }^{ o } }  & \cos { { 20 }^{ o } }  \end{vmatrix}=$$?

  • Question 7
    1 / -0

    Evaluate : $$\begin{vmatrix} \sin { { 23 }^{ o } }  & -\sin { { 7 }^{ o } }  \\ \cos { { 23 }^{ o } }  & \cos { { 7 }^{ o } }  \end{vmatrix}$$

  • Question 8
    1 / -0

    If $$A = \begin{bmatrix} a& b\\c  & d\end{bmatrix}$$ then $$adj\ A = ?$$

  • Question 9
    1 / -0

    If $$A$$ is a $$3-rowed$$ square matrix and $$|A| = 5$$ then $$|adj\ A| = ?$$

  • Question 10
    1 / -0

    If $$|A| = 3$$ and $$A^{-1} = \begin{bmatrix}3 & -1\\ \dfrac {-5}{3} & \dfrac {2}{3}\end{bmatrix}$$ then $$adj\ A = ?$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now