Self Studies

Determinants Test - 59

Result Self Studies

Determinants Test - 59
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A = \begin{bmatrix}2 & 5\\ 1 & 3\end{bmatrix}$$ then $$adj\ A = ?$$
    Solution

  • Question 2
    1 / -0
    $$\begin{vmatrix} \cos { { 15 }^{ o } }  & \sin { { 15 }^{ o } }  \\ \sin { { 15 }^{ o } }  & \cos { { 15 }^{ o } }  \end{vmatrix}=$$?
    Solution
    Let us consider $$\Delta=\begin{vmatrix} \cos { { 15 }^{ o } }  & \sin { { 15 }^{ o } }  \\ \sin { { 15 }^{ o } }  & \cos { { 15 }^{ o } }  \end{vmatrix}=$$

    $$\Delta=\cos^215^0-\sin^2 15^0$$

    $$=\cos 30^0$$.........$$(\because \cos 2\theta=\cos^2 \theta-\sin^2 \theta)$$

    $$=\dfrac{\sqrt{3}}{2}$$

    Hence $$\begin{vmatrix} \cos { { 15 }^{ o } }  & \sin { { 15 }^{ o } }  \\ \sin { { 15 }^{ o } }  & \cos { { 15 }^{ o } }  \end{vmatrix}=\dfrac{\sqrt{3}}{2}$$

    Option $$C$$.
  • Question 3
    1 / -0
    When the determinant $$\begin{vmatrix} \cos { 2x }  & \sin ^{ 2 }{ x }  & \cos { 4x }  \\ \sin ^{ 2 }{ x }  & \cos { 2x }  & \cos ^{ 2 }{ x }  \\ \cos { 4x }  & \cos ^{ 2 }{ x }  & \cos { 2x }  \end{vmatrix}$$ is expanded in powers of $$\sin x$$, then the constant term in that expression is
    Solution
    $$f(x)=\begin{vmatrix} \cos { 2x }  & \sin ^{ 2 }{ x }  & \cos { 4x }  \\ \sin ^{ 2 }{ x }  & \cos { 2x }  & \cos ^{ 2 }{ x }  \\ \cos { 4x }  & \cos ^{ 2 }{ x }  & \cos { 2x }  \end{vmatrix}$$
    the requried constant term is
    $$\quad f(0)=\begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}=\quad \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{vmatrix}=1(0-1)=-1$$
  • Question 4
    1 / -0
    If the determinant $$\begin{vmatrix} \cos  2x & \sin ^{ 2 } x & \cos  4x \\ \sin ^{ 2 } x & \cos  2x & \cos ^{ 2 } x \\ \cos  4x & \cos ^{ 2 } x & \cos  2x \end{vmatrix}$$ is expanded in powers of $$\sin x$$ then the constant term in the expansion is 
    Solution
    Let $$\begin{vmatrix}\cos 2x & \sin^2 x &\cos 4x \\ \sin^2 x &\cos 2x  &\cos^2x \\\cos 4x &\cos^2x  &\cos 2x\end{vmatrix}= a_{1} +a_{2}\sin ^2 x +a_{3}\sin ^3 x + ....$$             . . . . . . . . . . . $$(i)$$
    The constant term in the expansion is clearly the term $$a_{1}$$.
    Putting $$x=0$$ on both sides of $$(i)$$ we get-
    $$\begin{vmatrix}1 & 0 & 1\\ 0 & 1 &1 \\ 1 & 1 &1\end{vmatrix} = a_{1}$$
    $$\Rightarrow a_{1}=\begin{vmatrix}1 & 0 & 1\\ 0 & 1 &1 \\ 0 & 1 &0\end{vmatrix}$$   ($$R_{3} \rightarrow R_{3} - R_{1}$$)
    $$\Rightarrow a_{1} = 1(0 - 1) = -1$$    (Expanding along $$C_{1}$$)
    Thus, the constant term is $$-1$$.


    The correct answer is option C.


  • Question 5
    1 / -0
    If $$\begin{vmatrix} a & b-c & c+b \\ a+c & b & c-a \\ a-b & a+b & c \end{vmatrix}=0$$, then the line $$ax+by+c=0$$ passes through the fixed point whcih is
    Solution
    applying $${C}_{1}\rightarrow a{C}_{!}$$ and then $${C}_{1}\rightarrow {C}_{1}+b{C}_{2}+c{C}_{3}$$ and taking $$\left( { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } \right) $$ common from $${C}_{1}$$ we get
    $$\Delta =\cfrac { \left( { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } \right)  }{ a } \begin{vmatrix} 1 & b-c & c+b \\ 1 & b & c-a \\ 1 & b+a & c \end{vmatrix}=\cfrac { \left( { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } \right)  }{ a } \begin{vmatrix} 1 & b-c & c+b \\ 0 & c & -a-b \\ 0 & a+c & -b \end{vmatrix}$$
    $$({R}_{2}\rightarrow {R}_{2}-{R}_{1},{R}_{3}\rightarrow {R}_{3}-{R}_{1})$$
    $$=\cfrac { \left( { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } \right)  }{ a } (-bc+{ a }^{ 2 }+ab+ac+bc)=\left( { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } \right) (a+b+c)$$
    hence $$\Delta =0\Rightarrow a+b+c=0$$
    therefore line $$ax+by+c=0$$ passes through the fixed point $$(1,1)$$
  • Question 6
    1 / -0
    If A is singular matrix , then adj A is 
    Solution
    $$ A adj A = |A| I $$

    $$ \Rightarrow |A adj A | = |A|^n  $$ [ if A is of order $$ n \times n ] $$

    $$ \Rightarrow |A| |adj A| = |A|^n $$

    $$ \Rightarrow |adj A| = |A|^{n-1} $$

    Now, A is singular .

    $$ \therefore |A| = 0 $$

    $$ \Rightarrow |adj A | = 0 $$

    Hence adj A is singular.
  • Question 7
    1 / -0
    There are two values of a which makes determinant $$ \Delta =\left| \begin{matrix} 1\quad  & -2 & 5 \\ 2 & a & -1 \\ 0 & 4 & 2a \end{matrix} \right| =86 $$ then sum of these number is
    Solution
    we have $$ \Delta =\left| \begin{matrix} 1\quad  & -2 & 5 \\ 2 & a & -1 \\ 0 & 4 & 2a \end{matrix} \right| =86 $$ 

    $$ \Rightarrow  1(2a^2 +4) -2(-4a -20) + 0 = 86 $$ [expanding along first column ]

    $$ \Rightarrow 2a^2 +4 +8a +40 = 86 $$

    $$ \Rightarrow 2a^2 + 8a +44 -86 = 0 $$

    $$ \Rightarrow a^2 +4a -21 = 0 $$

    $$ \Rightarrow a^2 +7a -3a-21 =0 $$

    $$ \Rightarrow (a +7)(a-3) = 0 $$

    $$ a = -7  $$ and $$ 3 $$

    $$ \therefore $$ Required sum  = $$  -7 +3 = -4 $$
  • Question 8
    1 / -0
    If $$ \begin{vmatrix} 2x & 5 \\ 8 & x \end{vmatrix}=\begin{vmatrix} 6 & -2 \\ 7 & 3 \end{vmatrix}$$ then value of $$ x $$ is
    Solution
    $$ \because \begin{vmatrix} 2x & 5 \\ 8 & x \end{vmatrix}=\begin{vmatrix} 6 & -2 \\ 7 & 3 \end{vmatrix} $$
    $$ \Rightarrow  2x^2 -40 = 18 +14 $$
    $$ \Rightarrow  2x^2 = 32 +40 $$
    $$ \Rightarrow  x^2 = \frac {72}{2} = 36 $$
    $$ \therefore x = \pm 6 $$
  • Question 9
    1 / -0
    Choose the correct answer from the given alternatives in the following question:
    If $$ A = \begin{bmatrix} 2 & -4 \\ 3 & 1  \end{bmatrix} $$, then the adjoint of matrix $$A$$ is 
    Solution

  • Question 10
    1 / -0
    Choose the correct answer from the given alternatives in the following question:
    If $$ A = \begin{bmatrix} 1 & 2 \\ 2 & 1  \end{bmatrix} $$ and $$ A ({\text{adj}} A) = KI $$ , then the value of $$k$$ is 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now