Self Studies

Determinants Test - 61

Result Self Studies

Determinants Test - 61
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the lines $$p_{1}x+q_{1}y=1,p_{2}x+q_{2}y=1 $$ and $$ p_{3}x+q_{3}y=1$$ be concurrent, then the points $$(p_{1},q_{1}),(p_{2},q_{2})$$ and $$(p_{3},q_{3})$$ ,
    Solution
    $$p_{1}x+q_{1}y=1,\ p_{2}x+q_{2}y =1\ p_{3}x+q_{3}y=1$$
    Given lines are concurrent
    $$\Rightarrow \begin{vmatrix} p_{1} & q_{1} & 1 \\ p_{2} & q_{2}& 1 \\ p_{3} & q_{3} & 1 \end{vmatrix}=0$$

    $$\Rightarrow p_{1}(q_{2}-q_{3})-q_{1}(p_{2}-p_{3})+(p_{2}q_{3}-p_{3}q_{2})=0$$

    $$\Rightarrow (p_{1}q_{2}-p_{2}q_{1})+(p_{2}q_{3}-p_{3}q_{2})+(p_{3}q_{1}-p_{1}q_{3})=0$$
    The left hand side of the above equation is also equal to twice the area of a triangle with coordinates $$(p_1, q_1),\; (p_2, q_2),\; (p_3,q_3)$$
    Since it is equal to zero, $$(p_{1},q_{1}),(p_{2},q_{2}),(p_{3},q_{3})$$ are collinear.
  • Question 2
    1 / -0
    If the lines $${x}+{a}{y}+{a}=0,\ {b}{x}+{y}+{b}=0,\ {c}{x}+{c}{y}+1 =0 ({a}\neq{b}\neq {c}\neq1)\ $$ are concurrent, then the value of $$\displaystyle \frac{{a}}{{a}-1}+\frac{{b}}{{b}-1}+\frac{{c}}{{c}-1}$$, is
    Solution

    Given $$x+ay+a=0$$   ...(1)

    $$bx+y+b=0$$   ...(2)

    $$cx+cy+1=0$$    ...(3)

    These lines are concurrent means they have only one intersection point

    From 1 & 2,

    $$(ab-1)y+ab-b=0$$

    $$y=\dfrac{b-ab}{ab-1}$$ & $$x=-a\left(\dfrac{b-1}{ab-1}\right)$$

    From 1 & 3,

    $$(ac-c)y+ac-1=0$$

    $$y=\dfrac{1-ac}{ac-c}$$ & $$x=-a\left(\dfrac{1-c}{ac-c}\right)$$

    So, 

    $$\dfrac{b-ab}{ab-1}=\dfrac{1-ac}{ac-c}$$

    $$\Rightarrow abc-cb+abc-a^2bc=ab-a^2bc-1+ac$$

    $$\Rightarrow 1+2abc=ab+ac+bc$$    ...(4)

    Now,

    $$\dfrac{a}{a-1}+\dfrac{b}{b-1}+\dfrac{c}{c-1}=\dfrac{ab-a+ab-b}{ab-a-b+1}+\dfrac{c}{(c-1)}$$

    $$=\dfrac{2abc-ac-bc-2ab+a+b+abc-ac-bc+c}{abc-ac-bc+c-ab+a+b-1}$$

    $$=\dfrac{3abc-2(ac+bc+ab)+a+b+c}{abc-(ac+bc+ab)+a+b+c-1}$$

    $$=\dfrac{abc-(ac+bc+ab)+(a+b+c)-1}{abc-(ac+bc+ab)+(a+b+c)-1}=1$$ [From (4)]


    Hence, option C.

  • Question 3
    1 / -0
    If $$x_1, x_2, x_3$$ as well as $$y_1, y_2, y_3$$ are in G.P. with same common ratio, then the points $$P(x_1, y_1), Q (x_2, y_2)$$ and $$R(x_3, y_3)$$
    Solution
    Let $$ x_1=a , x_2=ar $$ and $$x_3=ar^2;  y_1=b, y_2=br$$ and $$y_3=br^2$$
    Now, $$\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{br-b}{ar-a}=\dfrac{b}{a}$$
    Similarly, $$\dfrac{y_3-y_2}{x_3-x_2}=\dfrac{br^2-br}{ar^2-ar}=\dfrac{b}{a}$$
    Thus, the points are collinear as they lie on same line. 
  • Question 4
    1 / -0

    Directions For Questions

    Let $$A= \begin{bmatrix} 1& 0 & 0\\ 1 & 0 & 1\\ 0 & 1 & 0\end{bmatrix}$$ satisfies $$A^n = A^{n - 2} + A^2 - I$$ for $$n \geq 3$$. and trace of a square matrix $$X$$ is equal to the sum of elements in its principal diagonal. Further consider a matrix $$\displaystyle \bigcup_{3 \times 3}$$ with its column as $$\cup_1, \cup_2, \cup_3$$ such that $$A^{50} \cup_1 = \begin{bmatrix}1\\25 \\ 25\end{bmatrix}, A^{50} \cup_2 = \begin{bmatrix}0\\ 1 \\ 0\end{bmatrix}, A^{50} \cup_3 = \begin{bmatrix}0\\ 0 \\ 1\end{bmatrix}$$ Then answer of  the following question:

    ...view full instructions

    The values of $$|A^{50}|$$ equals
    Solution
    Given $$A= \begin{bmatrix} 1& 0 & 0\\ 1 & 0 & 1\\ 0 & 1 & 0\end{bmatrix}$$ satisfies $$A^n = A^{n - 2} + A^2 - I$$ for $$n \geq 3$$
    $$\Rightarrow A^4=A^2+A^2-I=2A^2-I$$
    $$\Rightarrow A^6=A^4+A^2-I=3A^2-2I$$
    similarly
    $$A^{50}=25A^2-24I$$
    $$A^2=\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
    $$\therefore A^{50}=\begin{bmatrix} 25 & 0 & 0 \\ 25 & 25 & 0 \\ 25 & 0 & 25 \end{bmatrix}-\begin{bmatrix} 24 & 0 & 0 \\ 0 & 24 & 0 \\ 0 & 0 & 24 \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 25 & 1 & 0 \\ 25 & 0 & 1 \end{bmatrix}$$
    $$\Rightarrow A^{50}=\begin{bmatrix} 1 & 0 & 0 \\ 25 & 1 & 0 \\ 25 & 0 & 1 \end{bmatrix}$$
    $$\therefore |A^{50}|=1$$
    Hence, option B.

  • Question 5
    1 / -0

    Directions For Questions

    Let $$A= \begin{bmatrix} 1& 0 & 0\\ 1 & 0 & 1\\ 0 & 1 & 0\end{bmatrix}$$ satisfies $$A^n = A^{n - 2} + A^2 - I$$ for $$n \geq 3$$. and trace of a square matrix $$X$$ is equal to the sum of elements in its principal diagonal. Further consider a matrix $$\displaystyle \bigcup_{3 \times 3}$$ with its column as $$\cup_1, \cup_2, \cup_3$$ such that $$A^{50} \cup_1 = \begin{bmatrix}1\\25 \\ 25\end{bmatrix}, A^{50} \cup_2 = \begin{bmatrix}0\\ 1 \\ 0\end{bmatrix}, A^{50} \cup_3 = \begin{bmatrix}0\\ 0 \\ 1\end{bmatrix}$$ Then answer of  the following question:

    ...view full instructions

    The value of $$|\cup|$$ equals
    Solution
    Given $$A= \begin{bmatrix} 1& 0 & 0\\ 1 & 0 & 1\\ 0 & 1 & 0\end{bmatrix}$$ satisfies $$A^n = A^{n - 2} + A^2 - I$$ for $$n \geq 3$$
    $$\Rightarrow A^4=A^2+A^2-I=2A^2-I$$
    $$\Rightarrow A^6=A^4+A^2-I=3A^2-2I$$
    similarly
    $$A^{50}=25A^2-24I$$
    $$A^2=\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
    $$\therefore A^{50}=\begin{bmatrix} 25 & 0 & 0 \\ 25 & 25 & 0 \\ 25 & 0 & 25 \end{bmatrix}-\begin{bmatrix} 24 & 0 & 0 \\ 0 & 24 & 0 \\ 0 & 0 & 24 \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 25 & 1 & 0 \\ 25 & 0 & 1 \end{bmatrix}$$
    $$\Rightarrow A^{50}=\begin{bmatrix} 1 & 0 & 0 \\ 25 & 1 & 0 \\ 25 & 0 & 1 \end{bmatrix}$$
    Given $$\displaystyle \bigcup_{3 \times 3}$$ with its column as $$\cup_1, \cup_2, \cup_3$$ such that $$A^{50} \cup_1 = \begin{bmatrix}1\\25 \\ 25\end{bmatrix}, A^{50} \cup_2 = \begin{bmatrix}0\\ 1 \\ 0\end{bmatrix}, A^{50} \cup_3 = \begin{bmatrix}0\\ 0 \\ 1\end{bmatrix}$$
    let $$B=A^{50}=\begin{bmatrix} 1 & 0 & 0 \\ 25 & 1 & 0 \\ 25 & 0 & 1 \end{bmatrix}$$
    $$B^{-1}=\begin{bmatrix} 1 & 0 & 0 \\ -25 & 1 & 0 \\ -25 & 0 & 1 \end{bmatrix}$$
    $$\cup_1=B^{-1}\begin{bmatrix}1\\25 \\ 25\end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ -25 & 1 & 0 \\ -25 & 0 & 1 \end{bmatrix}\begin{bmatrix}1\\25 \\ 25\end{bmatrix}=\begin{bmatrix}1\\0 \\ 0\end{bmatrix}$$
    $$\cup_2=B^{-1}\begin{bmatrix}0\\1 \\ 0\end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ -25 & 1 & 0 \\ -25 & 0 & 1 \end{bmatrix}\begin{bmatrix}0\\1 \\ 0\end{bmatrix}=\begin{bmatrix}0\\1 \\ 0\end{bmatrix}$$
    $$\cup_3=B^{-1}\begin{bmatrix}0\\0 \\ 1\end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ -25 & 1 & 0 \\ -25 & 0 & 1 \end{bmatrix}\begin{bmatrix}0\\0 \\ 1\end{bmatrix}=\begin{bmatrix}0\\0 \\ 1\end{bmatrix}$$
    $$\therefore |\cup|=\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}=1$$
    Hence, option B.
  • Question 6
    1 / -0
    If A is a square matrix of order 3, then $$|(A - A^T)^{105}|$$ is equal to
    Solution
    $$\left |\left (A-A^{T}  \right )^{105}  \right |=\left |-\left (A^{T}-A  \right )  \right |^{105}$$
      
               $$=-\left |A^{T}-A  \right |^{105}$$

                $$=-\left |\left (A^{T}-A  \right )^{T}  \right |^{105}$$    ($$\because $$ determinant of matrix and its transpose is equal)

                $$=-\left |A-A^{T}  \right |^{105}$$

    $$\Rightarrow \left |A-A^{T}  \right |^{105}=-\left |A-A^{T}  \right |^{105}=0    (\because $$ determinant of skew-symmetric matrix of odd order is 0.) 
      
    $$\left |\left (A-A^{T}  \right )^{105}  \right |=0$$
    Hence, option 'D' is correct.             
  • Question 7
    1 / -0
    Let $$ \begin{vmatrix}
     1+x         &                 x        &                x^{2}\\
       x           &               1+x   &                       x^{2} \\
      x^{2}        &                x       &                1+x
    \end{vmatrix} =   ax^{5} + bx^{4} + cx^{3} + dx^{2} + \lambda x + \mu $$ be an identity in x, where a,b,c,d,$$ \lambda, \mu$$ are independent of x. Then the value of $$\lambda$$ is
    Solution
    Given, $$ \begin{vmatrix} 1+x  & x & x^{2}\\ x & 1+x & x^{2} \\ x^{2}  &  x & 1+x \end{vmatrix} =   ax^{5} + bx^{4} + cx^{3} + dx^{2} + \lambda x + \mu $$
    Put $$x=0$$
    $$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}=\mu $$
    $$\Rightarrow \mu=1$$
    Differentiating both sides, 
    $$\begin{vmatrix} 1 & 1 & 2x \\ x & 1+x & x^{ 2 } \\ x^{ 2 } & x & 1+x \end{vmatrix}+\begin{vmatrix} 1+x & x & x^{ 2 } \\ 1 & 1 & 2x \\ x^{ 2 } & x & 1+x \end{vmatrix}+\begin{vmatrix} 1+x & x & x^{ 2 } \\ x & 1+x & x^{ 2 } \\ 2x & 1 & 1 \end{vmatrix}=5ax^{ 4 }+4bx^{ 3 }+3cx^{ 2 }+2dx+\lambda $$
    Put $$x=0$$
    $$\lambda =\begin{vmatrix} 1&1&0 \\ 0&1&0 \\ 0&0&1 \end{vmatrix}+\begin{vmatrix} 1&0&0 \\ 1&1&0 \\ 0&0&1 \end{vmatrix}+\begin{vmatrix} 1&0&0 \\ 0&1&0 \\ 0&1&1 \end{vmatrix}$$
    $$=1+1+1=3$$
  • Question 8
    1 / -0

    Directions For Questions

    Consider an arbitrary $$3 \times 3 matrix A = [a_{ij}].  A  matrix  B = [b_{ij}]$$ is formed such that $$b_{ij}$$ is the sum of all the elements except $$a_{ij}$$ in the ith row of A. Answer the following questions

    ...view full instructions

    The value of |B| is equal to
  • Question 9
    1 / -0
    If the points $$\displaystyle(-2,0),(-1,\dfrac{1}{\sqrt{3}})$$ and $$\displaystyle(\cos\theta,\sin \theta)$$ are collinear, then the number of values of $$\displaystyle \theta \in [0,2\pi]$$ :
    Solution
    Given points $$\displaystyle(-2,0),\left(-1,\dfrac1{\sqrt{3}}\right)$$ and $$\displaystyle(\cos\theta,\sin \theta)$$
    For collinearity,

    $$\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 &  y_2 & 1 \\ x_3  & y_3  & 1 \end{vmatrix}=0$$

    $$\begin{vmatrix} -2 & 0 & 1 \\ -1 & \dfrac { 1 }{ \sqrt { 3 }  }  & 1 \\ \cos { \theta  }  & \sin { \theta  }  & 1 \end{vmatrix}=0$$

    $$\displaystyle \sin { \theta  } -\frac { 1 }{ \sqrt { 3 }  } \cos { \theta  } =\frac { 2 }{ \sqrt { 3 }  } $$

    $$\Rightarrow \displaystyle \frac { \sqrt { 3 }  }{ 2 } \sin { \theta  } -\frac { 1 }{ 2 } \cos { \theta  } =1$$

    $$\Rightarrow \displaystyle \sin { (\theta -\frac { \pi  }{ 6 } ) } =\sin { \frac { \pi  }{ 2 }  } $$

    $$\Rightarrow \displaystyle \theta -\frac { \pi  }{ 6 } =n \pi + (-1)^n \frac { \pi  }{ 2 } $$ ($$n \in Z$$)

    $$\Rightarrow \displaystyle \theta=\frac{2\pi}{3}$$ (when $$\theta \in [0, 2 \pi ], n=1$$)

  • Question 10
    1 / -0
    Let $$\begin{vmatrix} x& 2 & x\\ x^2 & x & 6\\ x & x & 6\end{vmatrix}  = \alpha x^4 + \beta x^3 + \gamma x^2 + \delta x + \lambda$$ then the value of $$5 \alpha + 4 \beta + 3\gamma + 2 \delta + \lambda = $$
    Solution
    Given, $$\begin{vmatrix} x& 2 & x\\ x^2 & x & 6\\ x & x & 6\end{vmatrix}  = \alpha x^4 + \beta x^3 + \gamma x^2 + \delta x + \lambda$$

    Put $$x=0$$
    $$\begin{vmatrix} 0 & 2 & 0 \\ 0 & 0 & 6 \\ 0 & 0 & 6 \end{vmatrix}=\lambda $$
    $$\Rightarrow \lambda=0$$

    So, $$\begin{vmatrix} x& 2 & x\\ x^2 & x & 6\\ x & x & 6\end{vmatrix}  = \alpha x^4 + \beta x^3 + \gamma x^2 + \delta x$$
    Differentiating w.r.t x,
    $$\begin{vmatrix} 1 & 0 & 1 \\ x^{ 2 } & x & 6 \\ x & x & 6 \end{vmatrix}+\begin{vmatrix} x & 2 & x \\ 2x & 1 & 0 \\ x & x & 6 \end{vmatrix}+\begin{vmatrix} x & 2 & x \\ x^{ 2 } & x & 6 \\ 1 & 1 & 0 \end{vmatrix}=4\alpha x^{ 3 }+3\beta x^{ 2 }+2\gamma x+\delta $$
    Put $$x=0$$
    $$\Rightarrow \begin{vmatrix} 1 & 0 & 1 \\ 0 & 0 & 6 \\ 0 & 0 & 6 \end{vmatrix}+\begin{vmatrix} 0 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 6 \end{vmatrix}+\begin{vmatrix} 0 & 2 & 0 \\ 0 & 0 & 6 \\ 1 & 1 & 0 \end{vmatrix}=\delta $$

    $$\Rightarrow \delta=-12$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now