Self Studies

Determinants Test - 65

Result Self Studies

Determinants Test - 65
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\begin{vmatrix} a + b& b + c & c +a \\ c + a & a + b & b + c\\ b + c & c + a & a + b\end{vmatrix} = t\times det$$ of circulant matrix whose elements of first column are $$a, b, c$$ then $$'t'$$ equals.
    Solution

  • Question 2
    1 / -0
    If $$\theta \epsilon R$$, then the $$determinant $$  $$\Delta$$ $$ $$ =\begin{vmatrix} \sin { \theta  }  & \cos { \theta  }  & \sin { 2\theta  }  \\ \sin { \left( \theta +\cfrac { 2\pi  }{ 3 }  \right)  }  & \cos { \left( \theta +\cfrac { 2\pi  }{ 3 }  \right)  }  & \sin { \left( 2\theta +\cfrac { 2\pi  }{ 3 }  \right)  }  \\ \sin { \left( \theta -\cfrac { 2\pi  }{ 3 }  \right)  }  & \cos { \left( \theta -\cfrac { 2\pi  }{ 3 }  \right)  }  & \sin { \left( 2\theta -\cfrac { 2\pi  }{ 3 }  \right)  }  \end{vmatrix}= 
  • Question 3
    1 / -0
    If $$|A|$$ denotes the value of the determinant of the square matrix $$A$$ order $$3$$, then $$|-2A|=$$
    Solution

  • Question 4
    1 / -0
    $$f(x) = \begin{vmatrix}2\cos x & 1 & 0\\ x - \dfrac {\pi}{2} & 2\cos x & 1\\ 0 & 1 & 2\cos x\end{vmatrix}\Rightarrow f'(x) =$$
    Solution

  • Question 5
    1 / -0
    Let $$\left[ \begin{matrix} \cos ^{ -1 }{ x }  & \cos ^{ -1 }{ y }  & \cos ^{ -1 }{ z }  \\ \cos ^{ -1 }{ y }  & \cos ^{ -1 }{ z }  & \cos ^{ -1 }{ x }  \\ \cos ^{ -1 }{ z }  & \cos ^{ -1 }{ x }  & \cos ^{ -1 }{ y }  \end{matrix} \right] $$ such that $$|A|=0$$, then maximum value of $$x+y+z$$ is
    Solution

  • Question 6
    1 / -0
    If $$a + b + c = 0$$  one root of $$\left| {\begin{array}{*{20}{c}}{a - x}&c&b\\c&{b - x}&a\\b&a&{c - x}\end{array}} \right|$$ =0 is
    Solution

  • Question 7
    1 / -0
    If $$\left( \omega \neq 1 \right)$$  is a cubic root of unity then $$ \left| \begin{matrix} 1 & 1+i+{ \omega  }^{ 2 } & { { \omega  } }^{ 2 } \\ 1-i & -1 & { \omega  }^{ 2 }-1 \\ -i & -1+\omega -i & -1 \end{matrix} \right|$$ equals-
    Solution

  • Question 8
    1 / -0
    If $$\left| \begin{array} { r r r } { x } & { 2 } & { x } \\ { x ^ { 2 } } & { x } & { 0 } \\ { x } & { x } & { 8 } \end{array} \right|$$ = $$A x ^ { 4 } + B x ^ { 3 } + c x ^ { 2 } + D x + E$$ , then the value of $$5 A + 4 B + 2 C + 2 D + E$$ is equal to
    Solution

  • Question 9
    1 / -0
    If A is a square matrix of order 3, then $$\left| Adj(Adj{  A }^{ 2 }) \right| =$$
    Solution

  • Question 10
    1 / -0
    The value of $$\begin{vmatrix} 1 & 1 & 1 \\ { \left( { 2 }^{ x }+{ 2 }^{ -x } \right)  }^{ 2 } & { \left( { 3 }^{ x }+{ 3 }^{ -x } \right)  }^{ 2 } & { \left( { 5 }^{ x }+{ 5 }^{ -x } \right)  }^{ 2 } \\ { \left( { 2 }^{ x }-{ 2 }^{ -x } \right)  }^{ 2 } & { \left( { 3 }^{ x }-{ 3 }^{ -x } \right)  }^{ 2 } & { \left( { 5 }^{ x }-{ 5 }^{ -x } \right)  }^{ 2 } \end{vmatrix}$$ is equal to
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now