Self Studies

Determinants Te...

TIME LEFT -
  • Question 1
    1 / -0

    If $$A=\begin{bmatrix} 2 & 1 & -1 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{bmatrix}$$, then $$tr(adj(adj\ A))$$ is equal  to

  • Question 2
    1 / -0

    Let $$A =[a_{ij}]$$ be a $$3 \times 3 $$ matrix whose determinant is $$5$$. Then the determinant of the matrix $$B = [ 2^{i-j} a_{ij} ]$$ is

  • Question 3
    1 / -0

    $$A=\begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}$$ and A (adj A)=KI, then the value of 'K' is ...

  • Question 4
    1 / -0

    If $$\left[ \begin{matrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{matrix} \right]$$ then $$|adj\ (adj\ A)|$$ is equal to

  • Question 5
    1 / -0

    If $$A=\begin{bmatrix} 1 & -2 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$$, then $$A.adj(a)=$$

  • Question 6
    1 / -0

    If $$A$$ is a square matrix of order $$n$$ and $$|A|=D$$ and $$|adj A|=D^{\prime}$$, then

  • Question 7
    1 / -0

    If the points (k, 2 - 2k) (1 - k, 2k) and (-k -4, 6 -2x) be collinear the possible values of k are

  • Question 8
    1 / -0

    If $$A = \begin{bmatrix} 4 & 2 \\ 3 & 4 \end{bmatrix}$$ then |adj A| is equal to 

  • Question 9
    1 / -0

    If $$A = \begin{bmatrix}1 & 2 & -1\\ -1 & 2 & 2\\ 2 & -1 & 1\end{bmatrix}$$, then $$:|adj (adj.A)|=$$

  • Question 10
    1 / -0

    If $$A=\begin{bmatrix} a & c & b\\ b & a & c\\ c & b & a\end{bmatrix}$$ then the cofactor of $$a_{32}$$ in $$A+A^T$$ is?

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now