Self Studies

Determinants Test - 69

Result Self Studies

Determinants Test - 69
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A= \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix} then Adj(A)=
    Solution

  • Question 2
    1 / -0
    If $$A=\begin{bmatrix} -4 & -1 \\ 3 & 1 \end{bmatrix}$$ then the determinant of the matrix $$\left( {A}^{2016}-2{A}^{2015}-{A}^{2014} \right) $$ is
  • Question 3
    1 / -0
    There are  $$12$$  points in a plane. The number of the straight lines joining any two of them when  $$3$$  of them are collinear is.
    Solution

  • Question 4
    1 / -0
    If adj B = A, |P| = |Q| = 1, then adj $$\left( { Q }^{ -1 }{ BP }^{ -1 } \right) $$ is
    Solution

  • Question 5
    1 / -0
    If $$A$$ is $$4\times 4$$ matrix and if $$\left| \left| A \right| adj\left( \left| A \right| A \right)  \right| ={ \left| A \right|  }^{ n }$$, then $$n$$ is 
  • Question 6
    1 / -0
    If $$A=\begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix}$$ and $$A(adj\, A)=A{A}^{T}$$ then $$5a+3b$$ is equal to 
  • Question 7
    1 / -0
    Two straight lines intersects at a point O. Points $$A_1, A_2,....A_n $$ are taken on one line and $$B_1,B_2,....B_n $$  on the other. If the point O is not to be used, the number of triangles that can be drawn using these points as vertices, is:
    Solution

  • Question 8
    1 / -0
    If A and B are square matrices of order 3 such that $$\left | A \right | $$= -1,$$\left | B \right | $$=3, then $$\left | 3AB \right | $$ equals
    Solution
    For any square matrix $$X$$ of order $$n$$, $$det(kX)=k^n(det X)$$ where $$k$$ is any constant.
    Here, $$A$$ and $$B$$ are square matrices of order 3 such that $$|A|=-1$$ and $$|B|=3$$.
    Now, $$|3AB|=3^3|AB|$$      (Since $$A$$ and $$B$$ are both of order 3 thus $$AB$$ is also a matrix of order 3)
    $$\Rightarrow |3AB| =27|A||B|$$      (Since for any square matrices $$A$$ and $$B$$, $$|AB|=|A||B|$$)
    $$\Rightarrow |3AB| =27(-1)(3)=-81$$


    Thus, $$|3AB|=-81$$.
  • Question 9
    1 / -0
    If $$f'(x)=\begin{vmatrix} mx & mx-p & mx+p \\ n & n+p & n-p \\ mx+2n & mx+2n+p & mx+2n-p \end{vmatrix}$$, then $$y=f(x)$$ represents
    Solution
    Given $${ f }^{ ' }\left( x \right) =\left| \begin{matrix} mx & mx-p & mx+p \\ n & n+p & n-p \\ mx+2n & mx+2n+p & mx+2n-p \end{matrix} \right| $$

    $${ R }_{ 3 }-2{ R }_{ 2 }\rightarrow { R }_{ 3 }$$

    $$\therefore { f }^{ ' }\left( x \right) =\left| \begin{matrix} mx & mx-p & mx+p \\ n & n+p & n-p \\ mx+2n-2n & mx+2n+p-2\left( n+p \right)  & mx+2n-p-2\left( n-p \right)  \end{matrix} \right| $$

    $$\therefore { f }^{ ' }\left( x \right) =\left| \begin{matrix} mx & mx-p & mx+p \\ n & n+p & n-p \\ mx & mx+2n+p-2n-2p & mx+2n-p-2n+2p \end{matrix} \right| $$

    $$\therefore { f }^{ ' }\left( x \right) =\left| \begin{matrix} mx & mx-p & mx+p \\ n & n+p & n-p \\ mx & mx-p & mx+p \end{matrix} \right| $$

    Now, $${ R }_{ 1 }={ R }_{ 3 }$$

    $$\therefore { f }^{ ' }\left( x \right) =0$$

    $$\therefore { f }\left( x \right) =c$$

    $$\therefore y=c$$

    This is the equation of straight line parallel to x axis.
  • Question 10
    1 / -0
    Let $$ A=  \left[ \begin{matrix} 1 & 2 & 3 \\ 2 & 0 & 5 \\ 0 & 2 & 1 \end{matrix} \right]  $$ and $$ B =  \left[ \begin{matrix} 0 \\ -3 \\ 1 \end{matrix} \right]  $$ which of the following is true ?
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now