Self Studies

Continuity and Differentiability Test - 13

Result Self Studies

Continuity and Differentiability Test - 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$x=a\cos ^{ 4 }{ t } ,y=b\ cosec^{ 4 }{ t } $$, then $$\cfrac { dx }{ dy } $$ at $$t=\cfrac { 3\pi  }{ 4 } $$
    Solution

  • Question 2
    1 / -0
    If $$y = \tan ^ { - 1 } \left( \cot \left( \dfrac { \pi } { 2 } - x \right) \right) ,$$ then $$\dfrac { d y } { d x } =$$
    Solution
    $$y={ \tan }^{ -1 }\left( \cot\left( \pi /2-x \right)  \right) $$
    $$\Rightarrow y={ \tan }^{ -1 }\left( tanx \right) =x$$
    $$\therefore$$    $$\dfrac { dy }{ dx } =1$$      [A]
  • Question 3
    1 / -0
    If $$y=\tan^{-1}\left(\dfrac{2^{x+1}}{1+2^{2x}}\right) $$ then $$\dfrac{dy}{dx}$$ at $$x=0$$ is
    Solution
    Given,
    $$y=\tan^{-1}\left(\dfrac{2^{x+1}}{1+2^{2x}}\right) $$

    or, $$y=\tan^{-1}\left(\dfrac{2.2^{x}}{1+(2^{x})^2}\right) $$

    or, $$y=2\tan^{-1}(2^x)$$

    Now, $$\dfrac{dy}{dx}=\dfrac{2}{1+(2^x)^2}\times 2^x\times \log 2$$.

    And $$\left.\dfrac{dy}{dx}\right|_{x=0}=\dfrac{2}{1+1}\times \log 2=\log 2$$.
  • Question 4
    1 / -0
    If $$y=\log \sin x$$ find $$x$$ if $$y=0$$
    Solution
    $$y=\log \sin x\\y=0\\\log \sin x=\log 1\\\sin x=1\\\sin x=\sin \dfrac{\pi}2\\x=\dfrac{\pi}2$$
  • Question 5
    1 / -0
    If $$f ( x ) =  \tan x$$ and $$f$$ is inverse of $$g ,$$ then $$g ^ { \prime } ( x )$$is equal to
    Solution
    Given $$f(x)=\tan x$$ and $$f$$ is inverse of $$g$$ 
    So , $$ g(x)$$ is $$\tan ^{-1} x $$
    $$g^{\prime}(x)=\dfrac{d}{dx}\tan^{-1}x\\g^{\prime}(x)=\dfrac{1}{1+x^2}$$
  • Question 6
    1 / -0
    Find the values of a and b so that the function $$f(x)=\left\{\begin{matrix} x^2+3x+a, & if & x\leq 1\\ bx+2, & if & x > 1\end{matrix}\right.$$ is differentiable at each $$x\in R$$.
    Solution
    If the function f(x) is required to be differentiable, it must be continuous too for $$x\in R$$

    But it is clearly evident that f(x) is continuous and differentiable in interval $$(-\infty,1)\cup(1,\infty)$$

    So, only point need to be examined is x=1 .

    For $$f(x)$$ to be continuous at $$x=1$$,

    LHL of $$f(x)$$ at $$x=1$$ must be equal to RHL of $$f(x)$$ at $$x=1$$

    i.e., $$(1)^2+3(1)+a =b(1)+2 \rightarrow b-a=2$$ ...............................................1

    For $$f(x)$$ to be differentiable at $$x=1$$,

    LHD of f(x) at x=1 must be equal to RHD of $$f(x)$$ at $$x=1$$

    i.e., $$2(1) + 3 = b \rightarrow b=5$$
     
    by putting $$b$$ value in  we have $$a=3$$

    Thus we get $$(a,b) = (3,5)$$
  • Question 7
    1 / -0
    The set of points where the functions f given by $$f(x)=|x-3|\cos x$$ differentiable is
    Solution
    b
  • Question 8
    1 / -0
    lf $$f(x)=\sin^{6}x+\cos^{6}x$$ then $$f''(x)=$$
    Solution
    $$f'(x)=6  \sin ^{5}x  \cos  x+6 \cos ^{5}x(-\sin   x)$$
    $$=3 \sin 2x(\sin ^{4}x-\cos ^{4}x)$$
    $$=-3 \sin  2x  \cos 2x$$
    $$=-\dfrac{3}{2}\sin 4x$$
    $$f''(x)=-6 \cos 4x$$
  • Question 9
    1 / -0
    Let $$f(x)$$ be differentiable function such that $$f\left (\displaystyle \frac{x+y}{1-xy}\right)=f(x)+f(y)\forall x$$ and $$y$$. lf $$ \displaystyle \lim_{x \rightarrow 0}\frac{f(x)}{x}=\frac{1}{3}$$, then $$f(1)$$ equals
    Solution
    $$f(\dfrac{x+y}{1-xy})=f(x)+f(y)$$

    $$f(x)=atan^{-1}x$$

    $$\lim_{x\rightarrow 0}  \dfrac{a tan^{-1}x}{x}=\dfrac{1}{3}$$

    $$\Rightarrow a=\dfrac{1}{3}$$

    $$f(x)=\dfrac{1}{3}tan^{-1}x$$

    $$\Rightarrow f(1)=\dfrac{1}{3}tan^{-1}(1)$$

    $$=\dfrac{\pi }{12}$$
  • Question 10
    1 / -0

    $$\displaystyle \mathrm{A}:\dfrac{d}{dx}(\sin x)\ at\ x=\frac{\pi}{2}$$

    $$\displaystyle \mathrm{B}:\dfrac{d}{dx}(\tan^{-1}{x})$$ at $$ {x}=1$$

    $$\displaystyle \mathrm{C}:\dfrac{d}{dx}(\mathrm{e}^{x})$$ at $${x}=0$$

    $$\mathrm{D}:\dfrac{d}{dx}(x^{x})\ at\ x=e$$

    Arrangement of the above values in the increasing order of the magnitude
    Solution
    $$A.\dfrac{d}{dx}(sinx)   =   cosx$$

    Put $$x=\dfrac{\pi }{2}$$

    $$=0$$

    $$B.\dfrac{d}{dx}(tan^{-1}x)=\dfrac{1}{1+x^{2}}$$

    Put$$\ x=1$$

    $$=\dfrac{1}{2}$$

    $$C.  \dfrac{d}{dx}(e^{x})=e^{x}$$

    Put  $$x=0$$

    $$=1$$

    $$D.\dfrac{d}{dx}(x^{x})=\dfrac{d}{dx}(e^{xLogx})=x^{x}(Log x+1)$$

    $$=2e^{e}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now