Self Studies

Continuity and ...

TIME LEFT -
  • Question 1
    1 / -0

     $$\displaystyle\frac{dy}{dx}$$ at $$\displaystyle t=\frac{\pi}{4}$$ for $$\displaystyle x=a\left[\cos{t}+\frac{1}{2}\log{\tan^2{\frac{t}{2}}}\right]$$ and $$y=a\sin{t}$$ is

  • Question 2
    1 / -0

    Directions For Questions

    A curve is represented parametrically by the equation $$x=e^t \cos t$$ and $$y=e^t \sin t$$, where $$t$$ is a parameter. Then,

    ...view full instructions

    The relation between the parameter '$$t$$' and the angle $$\alpha$$ between the tangent to the given curve and the $$x-$$axis is given by, '$$t$$' equals to

  • Question 3
    1 / -0

    If $$y={(\tan{x})}^{\displaystyle{(\tan{x})}^{\displaystyle\tan{x}}}$$, then find $$\displaystyle\frac{dy}{dx}$$ at $$\displaystyle x=\frac{\pi}{4}$$.

  • Question 4
    1 / -0

    If $$x=a\sec^{3}{\theta}$$ and $$y=a\tan^{3}{\theta}$$, then $$\displaystyle\frac{dy}{dx}$$ at $$\theta=\displaystyle\frac{\pi}{3}$$ is 

  • Question 5
    1 / -0

    Find $$\displaystyle\frac{dy}{dx}$$ if $$x=a(\theta-\sin{\theta})$$ and $$y=a(1-\cos{\theta})$$.

  • Question 6
    1 / -0

    If   $$\displaystyle y^{x}=x^{\sin y} $$, find $$\cfrac{dy}{dx}$$.

  • Question 7
    1 / -0

    Discuss the applicability of Rolle's theorem to $$\displaystyle f(x)=\log \left[\frac{x^{2}+ab}{(a+b)x}\right],$$ in the interval$$ [a,b].$$

  • Question 8
    1 / -0

    Differentiate $$\displaystyle x^{\sin^{-1}x}$$ w.r.t. $$\displaystyle \sin ^{-1}x.$$

  • Question 9
    1 / -0

    $$\displaystyle y=(\cot x)^{\sin x}+(\tan  x)^{\cos x}$$.Find dy/dx 

  • Question 10
    1 / -0

    Verify Rolle's theorem for $$\displaystyle f(x)=x(x+3)e^{-x/2}$$ in $$(-3,0)$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now