Self Studies

Continuity and Differentiability Test - 16

Result Self Studies

Continuity and Differentiability Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
     $$\displaystyle\frac{dy}{dx}$$ at $$\displaystyle t=\frac{\pi}{4}$$ for $$\displaystyle x=a\left[\cos{t}+\frac{1}{2}\log{\tan^2{\frac{t}{2}}}\right]$$ and $$y=a\sin{t}$$ is
    Solution
    $$\displaystyle x=\frac{\pi}{4}$$ for $$\displaystyle

    x=a\left[\cos{t}+\frac{1}{2}\log{\tan^2{\frac{t}{2}}}\right]$$ and

    $$y=a\sin{t}$$

    Differentiating w.r.t $$t$$, we get
    $$\displaystyle \frac { dx }{ dt } =a\left[ \frac { d }{ dt } \cos { t } +\frac { 1 }{ 2 } \frac { d }{ dt } \left( \log { \tan ^{ 2 }{ \frac { t }{ 2 }  }  }  \right)  \right] $$
    $$\displaystyle\frac{dx}{dt}=a\left[-\sin{t}+\frac{1}{\displaystyle\tan{\frac{t}{2}}}\sec^2{\frac{t}{2}}\times\frac{1}{2}\right]$$
    $$\displaystyle \frac { dx }{ dt } =a\left[ -\sin { t } +\frac { 1 }{ 2\displaystyle \frac { \sin { { t }/{ 2 } }  }{ \cos { { t }/{ 2 } }  } .\cos ^{ 2 }{ { t }/{ 2 } }  }  \right]$$
    $$\displaystyle =a\left[-\sin{t}+\frac{1}{\displaystyle 2\sin{\frac{t}{2}}\cos{\frac{t}{2}}}\right]$$
    $$\displaystyle =a\left[-\sin{t}+\frac{1}{\sin{t}}\right]$$
    $$=a\left[ \displaystyle \frac { 1-\sin ^{ 2 }{ t }  }{ \sin { t }  }  \right] =a\left[ \displaystyle \frac { \cos ^{ 2 }{ t }  }{ \sin { t }  }  \right] $$
    $$\displaystyle\frac{dy}{dt}=a\cos{t}$$
    $$\displaystyle\therefore\frac{dy}{dx}=\frac{\displaystyle\frac{dy}{dt}}{\displaystyle\frac{dx}{dt}}=\frac{a\cos{t}}{\displaystyle\frac{a\cos^2{t}}{\sin{t}}}=\tan{t}$$
    At $$\displaystyle t=\frac{\pi}{4}$$, $$\displaystyle\frac{dy}{dx}=1$$
  • Question 2
    1 / -0

    Directions For Questions

    A curve is represented parametrically by the equation $$x=e^t \cos t$$ and $$y=e^t \sin t$$, where $$t$$ is a parameter. Then,

    ...view full instructions

    The relation between the parameter '$$t$$' and the angle $$\alpha$$ between the tangent to the given curve and the $$x-$$axis is given by, '$$t$$' equals to
    Solution
    $$x=e^t \cos t$$ and $$y=e^t \sin t$$

    $$\displaystyle \dfrac { dy }{ dt } =\displaystyle \dfrac { d }{ dt } \left( { e }^{ t }\sin { t }  \right) $$

    $$\displaystyle \dfrac { dy }{ dt } ={ e }^{ t }\left( \cos { t } +\sin { t }  \right) $$

    $$\displaystyle \dfrac { dx }{ dt } =\displaystyle \dfrac { d }{ dt } \left( { e }^{ t }\cos { t }  \right) $$

    $$\displaystyle \dfrac { dx }{ dt } ={ e }^{ t }\left( \cos { t } -\sin { t }  \right) $$

    $$\therefore \displaystyle \dfrac { dy }{ dx } =\displaystyle \dfrac { \cos { t } +\sin { t }  }{ \cos { t } -\sin { t }  } $$

    $$\therefore \tan { \left( \displaystyle \dfrac { \pi  }{ 4 } +t \right) =\tan { \alpha  }  } $$

    $$\displaystyle \dfrac { \pi  }{ 4 } +t=\alpha $$

    $$t=\alpha -\displaystyle \dfrac { \pi  }{ 4 } $$
  • Question 3
    1 / -0
    If $$y={(\tan{x})}^{\displaystyle{(\tan{x})}^{\displaystyle\tan{x}}}$$, then find $$\displaystyle\frac{dy}{dx}$$ at $$\displaystyle x=\frac{\pi}{4}$$.
    Solution
    Taking $$\log$$ on both sides, we get
    $$\log{y}={(\tan{x})}^{\displaystyle\tan{x}}\log{\tan{x}}$$
    Again taking $$\log$$ on both the sides
    $$\log{\log{y}}=[\tan{x}\log{\tan{x}}]+\log{\log{\tan{x}}}$$
    Differentiating w.r.t. $$x$$, we get
    $$\displaystyle\frac{1}{y\log{y}}\frac{dy}{dx}=\log { \tan { x } \frac { d }{ dx } \left( \tan { x }  \right) +\tan { x } \frac { d }{ dx } \left( \log { \tan { x }  }  \right) +\frac { d }{ dx } \left( \log { \log { \tan { x }  }  }  \right)  } $$

    $$\displaystyle \frac{dy}{dx}=\log { \tan { x } .\sec ^{ 2 }{ x } +\tan { x } .\frac { \sec ^{ 2 }{ x }  }{ \tan { x }  } +\frac { \sec ^{ 2 }{ x }  }{ \tan { x } .\log { \tan { x }  }  }  } $$
    $$\displaystyle \frac { dy }{ dx } =y\log { y.\sec ^{ 2 }{ x } \left[ \log { \tan { x } +1+\frac { 1 }{ \tan { x } .\log { \tan { x }  }  }  }  \right]  } $$
    At $$\displaystyle x=\frac{\pi}{4}$$, $$y=1$$ and $$\log{y}=0$$
    So, putting this values in the equation of $$\displaystyle \frac { dy }{ dx } $$, we get
    $$\displaystyle\therefore{\left(\frac{dy}{dx}\right)}_{\displaystyle x=\frac{\pi}{4}}=0$$
  • Question 4
    1 / -0
    If $$x=a\sec^{3}{\theta}$$ and $$y=a\tan^{3}{\theta}$$, then $$\displaystyle\frac{dy}{dx}$$ at $$\theta=\displaystyle\frac{\pi}{3}$$ is 
    Solution
    We have $$x=a\sec^{3}{\theta}$$ and $$y=a\tan^{3}{\theta}$$
    Differentiate w. r to $$\theta $$
    $$\displaystyle\frac{dx}{d\theta}=3a\sec^{2}{\theta}\displaystyle\frac{d}{d\theta}(\sec{\theta})=3a\sec^{3}{\theta}\tan{\theta}$$
    $$\displaystyle\frac{dy}{d\theta}=3a\tan^{2}{\theta}\displaystyle\frac{d}{d\theta}(\tan{\theta})=3a\tan^{2}{\theta}\sec^{2}{\theta}$$
     $$\therefore \displaystyle\frac{dy}{dx}=\frac{\displaystyle\frac{dy}{d\theta}}{\displaystyle\frac{dx}{d\theta}}=\frac{3a\tan^{2}{\theta}\sec^{2}{\theta}}{3a\sec^{3}{\theta}\tan{\theta}}=\frac{\tan{\theta}}{\sec{\theta}}=\sin{\theta}$$
     $$\displaystyle{\left(\frac{dy}{dx}\right)}_{\displaystyle\theta=\frac{\pi}{3}}=\sin{\frac{\pi}{3}}=\frac{\sqrt{3}}{2}$$
  • Question 5
    1 / -0
    Find $$\displaystyle\frac{dy}{dx}$$ if $$x=a(\theta-\sin{\theta})$$ and $$y=a(1-\cos{\theta})$$.
    Solution
    We have $$x=a(\theta-\sin{\theta})$$ and $$y=a(1-\cos{\theta})$$
    Differentiate w.r.t $$\theta $$
    $$\therefore\displaystyle\frac{dx}{d\theta}=a(1-\cos{\theta})$$ and $$\displaystyle\frac{dy}{d\theta}=a\sin{\theta}$$
    or $$\displaystyle\frac{dy}{dx}=\frac{\displaystyle\frac{dy}{d\theta}}{\displaystyle\frac{dx}{d\theta}}$$
    $$=\displaystyle\frac{a\sin{\theta}}{a(1-\cos{\theta})}=\frac{2\sin{\left(\displaystyle\frac{\theta}{2}\right)}\cos{\left(\displaystyle\frac{\theta}{2}\right)}}{2\sin^{2}{\left(\displaystyle\frac{\theta}{2}\right)}}=\cot{\left(\displaystyle\frac{\theta}{2}\right)}$$
  • Question 6
    1 / -0
    If   $$\displaystyle y^{x}=x^{\sin y} $$, find $$\cfrac{dy}{dx}$$.
    Solution
    Given $$\displaystyle y^{x}\:=x^{\sin \:y}$$. 

    Take log both sides.

    $$\displaystyle x \log y = \sin y \: \log \:x.$$ 

    Differentiate w.r.t. x 

    $$\displaystyle \log y+x.\frac{1}{y} \frac{dy}{dx} = \frac{1}{x} \sin y+ (\log x)\cos y .\frac{dy}{dx}$$

    $$\displaystyle \left ( \log y - \frac{\sin y}{x} \right )=\frac{dy}{dx}\left [ \cos y \log x-\frac{x}{y} \right ]$$

    $$\displaystyle \therefore \frac{dy}{dx}=\frac{y}{x}\left [ \frac{x \log y-\sin y}{y \log x \cos y-x}\right ]$$
  • Question 7
    1 / -0
    Discuss the applicability of Rolle's theorem to $$\displaystyle f(x)=\log \left[\frac{x^{2}+ab}{(a+b)x}\right],$$ in the interval$$ [a,b].$$
    Solution
    We have $$\displaystyle f(a)=\log \left [

    \frac{a^{2}+ab}{(a+b)a} \right ]=\log

    1=0$$ and  $$\displaystyle  f(b)=\log \left [

    \frac{b^{2}+ab}{(a+b)b} \right ]=\log1=0$$
    $$\Rightarrow f(a)=f(b)=0.$$ Also, it

    can be easily seen that $$f(x)$$ is continuous on $$[a,b]$$ and differentiable on

    $$[a,b]$$.
    Thus all the three conditions of Rolle's

    theorem are satisfied. Hence $$\displaystyle

    f^{'}(x)=0 $$for at last one value of x in $$[a,b]$$
    Now $$\displaystyle f^{'}(x)=0 =

    \frac{2x}{x^{2}+ab}-\frac{1}{x}=0\Rightarrow \displaystyle

    2x^{2}-(x^{2}+ab)=0=x^{2}=ab$$ or $$\displaystyle

    x=\sqrt{ab}$$ which is also known as stationary point.
  • Question 8
    1 / -0
    Differentiate $$\displaystyle x^{\sin^{-1}x}$$ w.r.t. $$\displaystyle \sin ^{-1}x.$$
    Solution
    Let  $$\displaystyle y = x^{\sin^{-1}x}$$ and  $$z = \displaystyle \sin ^{-1}x\Rightarrow \sin z = x$$
    we have to find $$\cfrac{dy}{dz}$$
    $$\Rightarrow y = (\sin z)^z$$ taking $$\log$$ both side $$\log y = z\log \sin z$$
    Differentiating w.r.t $$z$$
    $$\displaystyle \frac{1}{y}\frac{dy}{dz}=\log\sin z+z\frac{\cos z}{\sin z}$$
    $$\therefore \displaystyle \frac{dy}{dz}=y\left(\log\sin z+z\frac{\cos z}{\sin z}\right)=\displaystyle x^{\sin ^{-1}x}\left [ \log x+\sin ^{-1}x.\frac{\sqrt{\left ( 1-x^{2} \right )}}{x} \right ]$$
  • Question 9
    1 / -0
    $$\displaystyle y=(\cot x)^{\sin x}+(\tan  x)^{\cos x}$$.Find dy/dx 
    Solution
    Given $$\displaystyle y=(\cot x)^{\sin x}+(\tan  x)^{\cos x}$$

    Let $$u=(\cot x)^{\sin x}$$

    Taking log on both sides

    $$\log u=\sin x \log(\cot x)$$

    Differentiating w.r.t. x, we get,

    $$\dfrac{1}{u}\dfrac{du}{dx}=\dfrac{\sin x}{\cot x}(-cosec^2 x)+\cos x \log \cot x$$

    $$\Rightarrow \dfrac{du}{dx}=\sin x(\cot x)^{\sin x -1}(-cosec^2 x)+(\cot x)^{\sin x} \cos x \log \cot x$$

    Now, $$v=(\tan  x)^{\cos x}$$

    Taking log on both sides

    $$\log v=\cos x \log(\tan x)$$

    Differentiating w.r.t. x, we get,

    $$\dfrac{1}{v}\dfrac{dv}{dx}=\dfrac{\cos x}{\tan x}(\sec^2 x)-\sin x \log \tan x$$

    $$\Rightarrow \dfrac{dv}{dx}=\cos x(\tan x)^{\cos x -1}(\sec^2 x)+(\tan  x)^{\cos x}(-\sin x) \log \tan x$$

    Since, $$y=u+v$$

    $$\Rightarrow \dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx}$$

    $$\Rightarrow \dfrac{dy}{dx}=\sin x(\cot x)^{\sin x -1}(-cosec^2 x)+(\cot x)^{\sin x} \cos x \log \cot x+$$
                    $$ \cos x(\tan x)^{\cos x -1}(\sec^2 x)+(\tan  x)^{\cos x}(-\sin x) \log \tan x$$
  • Question 10
    1 / -0
    Verify Rolle's theorem for $$\displaystyle f(x)=x(x+3)e^{-x/2}$$ in $$(-3,0)$$
    Solution
    We have $$\displaystyle f(x)=x(x+3)e^{-x/2}$$
    $$\displaystyle \therefore f^{'}(x)=(2x+3)e^{-x/2}+(x^{2}+3x)e^{-x/2}\left ( -\frac{1}{2} \right )$$
    $$\displaystyle =e^{-x/2}\left [ 2x+3-\frac{1}{2}[x^{2}+3x] \right ]=-\frac{1}{2}[x^{2}-x-6]e^{-x/2}$$
    $$f^{'}(x)$$ exist for every value of x in the interval[-3,0]
    Hence, $$f(x)$$ is differentiable and hence, continous in the interval $$[-3,0]$$
    Also, we have $$\displaystyle f(-3)=f(0)=0\Rightarrow $$All the three conditions of Rolle's theorem are satisfied.
    So $$\displaystyle f^{'}(x)=0\Rightarrow  \frac{1}{2}(x^{2}-x-6)e^{-x/6}=0\Rightarrow x^{2}-x-6=0 \Rightarrow  x=3,-2$$
    Since, the value $$x=-2$$ lies in the open interval $$[-3,0]$$ the Rolle's theorem is verified.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now