Self Studies

Continuity and Differentiability Test - 18

Result Self Studies

Continuity and Differentiability Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle \frac{d}{dx}\left ( x^{\log x} \right )$$ is equal to
    Solution
    $$\displaystyle \dfrac { d }{ dx } \left( x^{ \log  x } \right) =\dfrac { d }{ dx } \left( { e }^{ \log { x } \log { x }  } \right) $$
    $$\displaystyle =\dfrac { d }{ dx } \left( { \left( \log { x }  \right)  }^{ 2 } \right) { e }^{ { \left( \log { x }  \right)  }^{ 2 } }$$
    $$\displaystyle =2\log { x } \dfrac { d }{ dx } \left( \log { x }  \right) { e }^{ { \left( \log { x }  \right)  }^{ 2 } }$$
    $$\displaystyle ={ e }^{ { \left( \log { x }  \right)  }^{ 2 } }2\log { x } \left( \dfrac { d }{ dx } \left( \log { x }  \right)  \right) $$
    $$\displaystyle =\dfrac { 1 }{ x } 2\log { x } { e }^{ { \left( \log { x }  \right)  }^{ 2 } }=2x^{ \log { x } -1 }\log { x } $$
  • Question 2
    1 / -0
    If $$\displaystyle y= \frac {\sqrt[3]{1+3x}\sqrt[4]{1+4x}\sqrt[5]{1+5x}}{\sqrt[7]{1+7x}\sqrt[8]{1+8x}}$$, then $$y'(0)$$ is equal to
    Solution
    $$\displaystyle y= \frac {\sqrt[3]{1+3x}\sqrt[4]{1+4x}\sqrt[5]{1+5x}}{\sqrt[7]{1+7x}\sqrt[8]{1+8x}}$$
    Take log both sides,
    $$\displaystyle \log y = \frac{1}{3}\log(1+3x)+\frac{1}{4}\log(1+4x)+\frac{1}{5}\log(1+5x)-\frac{1}{7}\log(1+7x)-\frac{1}{8}\log(1+8x)$$
    Differentiating both side w.r.t $$x$$
    $$\displaystyle

    \frac {1}{y}\times \frac {dy}{dx}=\frac {1}{(1+3x)}+\frac

    {1}{1+4x}+\frac {1}{1+5x}-\frac {1}{1+7x}-\frac {1}{1+8x}$$
    at $$x=0, y=1$$,  
    $$\therefore \displaystyle \frac {dy}{dx}=1+1+1-1-1=1$$
  • Question 3
    1 / -0
    Find $$ \displaystyle  \frac{dy}{dx}$$ if $$ y=x^{x} $$
    Solution
    $$y = x^x$$
    Take log both sides,
    $$\log y = x\log x$$
    Now differentiate both side w.r.t $$x$$
    $$\Rightarrow \cfrac{1}{y}\cfrac{dy}{dx} = 1+\log x$$
    $$\Rightarrow \cfrac{dy}{dx} =x^x(1+\log x)$$
  • Question 4
    1 / -0

     Find $$ \displaystyle \frac { dy }{ dx }$$ at $$t =\displaystyle \frac { \pi  }{ 4 }$$ if $$y =\displaystyle  \cos ^{ 4 }{ t } $$  & $$x =\displaystyle \sin ^{ 4 }{ t } $$.


    Solution
    $$\cfrac{dx}{dt} = 4\sin^3t .\cos t$$ and $$\cfrac{dy}{dt} =-4\cos^3t. \sin t$$
    $$\Rightarrow \cfrac{dy}{dx} = -\cfrac{\cos^2t}{\sin^2t}$$
    Thus at $$t = \cfrac{\pi}{4}$$,  $$\cfrac{dy}{dx} = -1$$
  • Question 5
    1 / -0
    Derivative of sin x w.r.t. cos x is
    Solution
    Let $$ cos\,x = t $$
    than, $$ dt = -sinx\,dx...(1) $$
    let $$ y = sinx $$
    $$ dy = cosx\,dx...(2) $$
    then (2) $$\div$$ (1)
    $$ \dfrac{dy}{dx} = \dfrac{cosx\,dx}{-sinx\,dx} = -cotx $$ 

  • Question 6
    1 / -0
    If $$y=\tan ^{ -1 }{ \sqrt { \dfrac { 1-\sin { x }  }{ 1+\sin { x }  }  }  } $$, then the value of $$\dfrac { dy }{ dx } $$ at $$x=\dfrac { \pi  }{ 6 } $$ is
    Solution
    Given, $$y=\tan ^{ -1 }{ \sqrt { \dfrac { 1-\sin { x }  }{ 1+\sin { x }  }  }  } $$
                     $$=\tan ^{ -1 }{ \sqrt { \dfrac { 1-\cos { \left( \dfrac { \pi  }{ 2 } -x \right)  }  }{ 1+\cos { \left( \dfrac { \pi  }{ 2 } -x \right)  }  }  }  } $$
                     $$=\tan ^{ -1 }{ \left| \tan { \left( \dfrac { \pi  }{ 4 } -\dfrac { x }{ 2 }  \right)  }  \right|  } $$
                     $$=\dfrac { \pi  }{ 4 } -\dfrac { x }{ 2 } $$                 $$\left[ \because x=\dfrac { \pi  }{ 6 }  \right] $$
    $$\Rightarrow \dfrac { dy }{ dx } =-\dfrac { 1 }{ 2 } $$
  • Question 7
    1 / -0
    If $$x=a\, cos^3\theta$$ and $$y=a\, sin^3\theta$$, then $$\sqrt{1+\left(\dfrac{dy}{dx}\right)^2}$$ is equal to
    Solution
    $$x=a\cos^3\theta$$, $$y=0\sin^3\theta$$

    diff wrt $$'\theta'$$
    $$\dfrac{dx}{d\theta}=3a\cos^2\theta(-\sin\theta)$$

    $$\dfrac{dy}{d\theta}=3a\sin^2\theta(+\cos \theta)$$

    $$\dfrac{dy}{dx}=\dfrac{3a\sin^2\theta \cos\theta}{-3a\cos^2\theta \sin\theta}=-\dfrac{\sin\theta}{\cos\theta}=-\tan\theta$$

    $$\therefore 1+\left(\dfrac{dy}{dx}\right)^2=1+\tan^2\theta =\sec^2\theta$$

    $$\sqrt{1+\left(\dfrac{dy}{dx}\right)^2}=\sqrt{\sec^2\theta}$$.

                            $$=|\sec \theta|$$
  • Question 8
    1 / -0
    The function represented by  the following graph is.

    Solution
    Since there is no discontinuity in the graph so clearly function is continuous,
    but is not differentiable at $$x=1$$, because graph of the function has a sharp point or kink.

    Note: The point on the graph of any function where it has a sharp corner or kink, function is not differentiable .
  • Question 9
    1 / -0
    If $$x = ct$$ and $$y = \dfrac {c}{t}$$, find $$\dfrac {dy}{dx}$$ at $$t = 2$$
    Solution
    We have, $$x=ct\Rightarrow \dfrac{dx}{dt}=c$$
    and $$y=\dfrac{c}{t}\Rightarrow \dfrac{dy}{dt}=-\dfrac{c}{t^2}$$
    $$\therefore \dfrac{dy}{dx}=\dfrac{\frac{dy}{dt}}{\frac{dx}{dt}}=-\dfrac{1}{t^2}$$
    Hence at $$t=2$$ 
    $$\dfrac{dy}{dx}=-\dfrac{1}{2^2}=-\dfrac{1}{4}$$
  • Question 10
    1 / -0
    If y = cos t and x = sin t, then what is $$\dfrac{dy}{dx}$$ equal to ?
    Solution
    Differentiating $$x,y$$ wrt $$t,$$ we get

    $$\dfrac { dx}{ dt } =\dfrac { d }{ dt } (\cos  t)=-\sin t$$ and 

    $$\dfrac { dx }{ dt } =\dfrac { d }{ dt } (\sin t)=\cos  t\\$$
    $$\therefore \dfrac { dy }{ dx } =\dfrac { \left( \dfrac { dy }{ dt }  \right)  }{ \left( \dfrac { dx }{ dt }  \right)  } =\dfrac { -\sin t }{ \cos  t } =-\dfrac { x }{ y } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now