Self Studies

Continuity and ...

TIME LEFT -
  • Question 1
    1 / -0

    If $$y=1-\cos { \theta  } ,x=1-\sin { \theta  } $$, then $$\cfrac { dy }{ dx } $$ at $$\theta =\cfrac { \pi  }{ 4 } $$ is

  • Question 2
    1 / -0

    Consider the parametric equation $$x = \cfrac {a(1 - t^{2})}{1 + t^{2}}, y = \cfrac {2at}{1 + t^{2}}$$.

    What is $$\cfrac {dy}{dx}$$ equal to?

  • Question 3
    1 / -0

    Consider the function $$f(x)=\left\{\begin{matrix} x^2-5, & x\leq 3\\ \sqrt{x+13}, & x > 3\end{matrix}\right.$$.

    Consider the following statements.
    $$1$$. The function is discontinuous at $$x=3$$.
    $$2$$. The function is not differentiable at $$x=0$$.
    Which of the statements is$$/$$ are correct?

  • Question 4
    1 / -0

    If $$f(x)=\sqrt{25-x^2}$$, then what is $$\displaystyle \lim_{ x\rightarrow 1 } \dfrac{f(x)-f(1)}{x-1}$$ equal to?

  • Question 5
    1 / -0

    If $$x=\sec { \theta  } -\cos { \theta  } $$ and $$y=\sec ^{ n }{ \theta  } -\cos ^{ n }{ \theta  } $$, then $${ \left( \dfrac { dy }{ dx }  \right)  }^{ 2 }$$ is

  • Question 6
    1 / -0

    If $$x = a \cos^3 \theta$$ and $$y = a\sin^3 \theta$$, then $$1 + \left( \dfrac{dy}{dx} \right )^2$$ is

  • Question 7
    1 / -0

    The function $$f(x) = \left\{\begin{matrix}x^{2}/a, & 0\leq x < 1\\ a, & 1\leq x < \sqrt {2}\\ \dfrac {2b^{2} - 4b}{x^{2}}, & \sqrt {2} \leq x < \infty\end{matrix}\right.$$ is continuous for $$0\leq x < \infty$$, then the most suitable values of $$a$$ and $$b$$ are

  • Question 8
    1 / -0

    If $$2^x + 2^y = 2^{x + y}$$, then $$\dfrac{dy}{dx}$$ is equal to

  • Question 9
    1 / -0

    If $$s=\sec ^{ -1 }{ \left( \cfrac { 1 }{ 2{ x }^{ 2 }-1 }  \right)  } $$ and $$t=\sqrt { 1-{ x }^{ 2 } } $$, then $$\cfrac { ds }{ dt } $$ at $$x=\cfrac { 1 }{ 2 }$$ is

  • Question 10
    1 / -0

    If $$x = \sin t$$ and $$y = \tan t$$, then $$\dfrac{dy}{dx}$$ is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now