Self Studies

Continuity and Differentiability Test - 19

Result Self Studies

Continuity and Differentiability Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$y=1-\cos { \theta  } ,x=1-\sin { \theta  } $$, then $$\cfrac { dy }{ dx } $$ at $$\theta =\cfrac { \pi  }{ 4 } $$ is
    Solution
    Given, $$ y=1-\cos { \theta  } $$
    $$\Rightarrow \cfrac { dy }{ d\theta  } =\sin { \theta  } $$
    Also given, $$x=1-\sin { \theta  } $$
    $$\Rightarrow \cfrac { dx }{ d\theta  } =-\cos { \theta  } $$
    Therefore, $$\cfrac { dy }{ dx } = \cfrac{\sin\theta}{-\cos\theta} =-\tan { \theta  } $$ at $$\theta =\cfrac { \pi  }{ 4 } $$ will be
    $$\therefore { \left[ \cfrac { dy }{ dx }  \right]  }_{ \theta =\frac { \pi  }{ 4 }  }=-\tan { \cfrac { \pi  }{ 4 }  } =-1$$
  • Question 2
    1 / -0
    Consider the parametric equation $$x = \cfrac {a(1 - t^{2})}{1 + t^{2}}, y = \cfrac {2at}{1 + t^{2}}$$.
    What is $$\cfrac {dy}{dx}$$ equal to?
    Solution
    Given : $$x=\cfrac { a\left( 1-{ t }^{ 2 } \right)  }{ 1+{ t }^{ 2 } } \; and\; y=\cfrac { 2at }{ 1+{ t }^{ 2 } } $$

    First consider  $$x=\cfrac { a\left( 1-{ t }^{ 2 } \right)  }{ 1+{ t }^{ 2 } } $$
    Diferentiating w.r.t $$'t'$$

    $$\cfrac { dx }{ dt } =a\left[ \cfrac { \left( 1+{ t }^{ 2 } \right) \left( -2t \right) -\left( 1{ -t }^{ 2 } \right) \left( 2t \right)  }{ { \left( 1+{ t }^{ 2 } \right)  }^{ 2 } }  \right] $$

    $$=-2at\left[ \cfrac { \left( 1+{ t }^{ 2 }+1-{ t }^{ 2 } \right)  }{ { \left( 1+{ t }^{ 2 } \right)  }^{ 2 } }  \right] =\cfrac { -4at }{ { \left( 1+{ t }^{ 2 } \right)  }^{ 2 } } \; \rightarrow \; (1)$$

    secondly $$y=\cfrac { 2at }{ 1+{ t }^{ 2 } } $$

    $$\Rightarrow \cfrac { dy }{ dt } =2a\left[ \cfrac { \left( 1+{ t }^{ 2 }.1 \right) -t\left( 2t \right)  }{ { \left( 1+{ t }^{ 2 } \right)  }^{ 2 } }  \right] \; \rightarrow \; (2)$$

    divide $$(2)\div (1)$$

    $$\cfrac { \cfrac { dy }{ dt }  }{ \cfrac { dx }{ dt }  } =\cfrac { 2a\left[ \cfrac { \left( 1+{ t }^{ 2 }.1 \right) -t\left( 2t \right)  }{ { \left( 1+{ t }^{ 2 } \right)  }^{ 2 } }  \right] \;  }{ \cfrac { -4at }{ { \left( 1+{ t }^{ 2 } \right)  }^{ 2 } } \;  } $$

    $$=\cfrac { -1\left[ 1+{ t }^{ 2 }-2{ t }^{ 2 } \right]  }{ -4t } \\ \cfrac { dy }{ dx } =\cfrac { -1-{ t }^{ 2 } }{ 2t } \; \rightarrow \; (3)$$

    Given : $$x=\cfrac { a\left( 1-{ t }^{ 2 } \right)  }{ 1+{ t }^{ 2 } } \; and\; y=\cfrac { 2at }{ 1+{ t }^{ 2 } } $$

    $$\cfrac { y }{ x } =\cfrac { \cfrac { 2at }{ 1+{ t }^{ 2 } }  }{ \cfrac { a\left( 1-{ t }^{ 2 } \right)  }{ 1+{ t }^{ 2 } }  } $$

    $$\cfrac { y }{ x } =\cfrac { 2t }{ 1-{ t }^{ 2 } } \; \rightarrow (4)$$

    Therefor substitute equation $$(4)$$  in $$(3)$$

    $$\cfrac { dy }{ dx } =\cfrac { -x }{ y } $$

    Hence option $$(4)$$ is the correct answer.
  • Question 3
    1 / -0
    Consider the function $$f(x)=\left\{\begin{matrix} x^2-5, & x\leq 3\\ \sqrt{x+13}, & x > 3\end{matrix}\right.$$.

    Consider the following statements.
    $$1$$. The function is discontinuous at $$x=3$$.
    $$2$$. The function is not differentiable at $$x=0$$.
    Which of the statements is$$/$$ are correct?
    Solution
    $$1. \displaystyle \lim _{ x\rightarrow { 3 }^{ - } }{ f\left( x \right)  } =\displaystyle \lim _{ x\rightarrow { 3 }^{ - } }{ \left( { x }^{ 2 }-5 \right)  } =9-5=4$$

    $$\displaystyle \lim _{ x\rightarrow { 3 }^{ + } }{ f\left( x \right)  } =\displaystyle \lim _{ x\rightarrow { 3 }^{ + } }{ \sqrt { x+13 }  } =\sqrt { 16 } =4$$

    LHL$$=$$RHL

    $$\Rightarrow \displaystyle \lim _{ x\rightarrow { 3 } }{ f\left( x \right)  } =4$$

    $$\Rightarrow$$ It is continuous

    $$2.f\left( x \right) ={ x }^{ 2 }-5$$

    $$f'\left( x \right) =2x$$  for $$x\le 3$$

    $$f'\left( x \right) $$ is continuous for $$x\le 3$$

    At $$x=0\quad f'\left( x \right) $$ is continuous

    $$\Rightarrow f\left( x \right) $$ is differentiable at $$x=0$$
  • Question 4
    1 / -0
    If $$f(x)=\sqrt{25-x^2}$$, then what is $$\displaystyle \lim_{ x\rightarrow 1 } \dfrac{f(x)-f(1)}{x-1}$$ equal to?
    Solution
    Consider $$\displaystyle \lim_{x\rightarrow 1}{\cfrac{f(x)-f(1)}{x-1}}$$
    We know that, $$\displaystyle \lim_{x\rightarrow a}{\cfrac{f(x)-f(a)}{x-a}}=f'(a)$$
    So, we get
    $$\displaystyle \lim_{x\rightarrow 1}{\cfrac{f(x)-f(1)}{x-1}}$$
    $$={\cfrac{f'(1)}{1}}=\left|{\cfrac{1(-2x)}{2\sqrt{25-x^2}}}\right|_{at\ x=1}$$
    $$=-\cfrac{1}{\sqrt {24}}$$ 
  • Question 5
    1 / -0
    If $$x=\sec { \theta  } -\cos { \theta  } $$ and $$y=\sec ^{ n }{ \theta  } -\cos ^{ n }{ \theta  } $$, then $${ \left( \dfrac { dy }{ dx }  \right)  }^{ 2 }$$ is
    Solution
    Given, $$x=\sec { \theta  } -\cos { \theta  } $$ and $$y=\sec ^{ n }{ \theta  } -\cos ^{ n }{ \theta  } $$

    Differentiate given equations with respect to $$\theta $$, we get

    $$\dfrac { dy }{ d\theta  } =n\sec ^{ n-1 }{ \theta  } \cdot \sec { \theta  } \cdot \tan { \theta  } -n\cdot \cos ^{ n-1 }{ \theta  } \left( -\sin { \theta  }  \right)$$

    $$=n\tan { \theta  } \left( \sec ^{ n }{ \theta  } +\cos ^{ n }{ \theta  }  \right)$$

    $$\dfrac { dx }{ d\theta  } =\sec { \theta  } \tan { \theta  } +\sin { \theta  } =\tan { \theta  } \left( \sec { \theta  } +\cos { \theta  }  \right) $$

    $$\therefore$$, $$ \dfrac { dy }{ dx } =\dfrac { n\tan { \theta  } \left( \sec ^{ n }{ \theta  } +\cos ^{ n }{ \theta  }  \right)  }{ \tan { \theta  } \left( \sec { \theta  } +\cos { \theta  }  \right)  } $$

    $$=\dfrac { n\left( \sec ^{ n }{ \theta  } +\cos ^{ n }{ \theta  }  \right)  }{ \left( \sec { \theta  } +\cos { \theta  }  \right)  } $$
    Square of the given differential would be $$ { \left( \dfrac { dy }{ dx }  \right)  }^{ 2 }=\dfrac { { n }^{ 2 }{ \left( \sec ^{ n }{ \theta  } +\cos ^{ n }{ \theta  }  \right)  }^{ 2 } }{ { \left( \sec { \theta  } +\cos { \theta  }  \right)  }^{ 2 } } $$

    $$=\dfrac { { n }^{ 2 }\left\{ { \left( \sec ^{ n }{ \theta  } -\cos ^{ n }{ \theta  }  \right)  }^{ 2 }+4 \right\}  }{ { \left( \sec { \theta  } -\cos { \theta  }  \right)  }^{ 2 }+4 } $$

    $$=\dfrac { { n }^{ 2 }\left( { y }^{ 2 }+4 \right)  }{ \left( { x }^{ 2 }+4 \right)  } $$
  • Question 6
    1 / -0
    If $$x = a \cos^3 \theta$$ and $$y = a\sin^3 \theta$$, then $$1 + \left( \dfrac{dy}{dx} \right )^2$$ is
    Solution
    Given, $$x=a\cos^3\theta, y=a\sin ^3\theta$$
    $$\dfrac {dx}{d\theta}=3a\cos^2\theta. (-\sin\theta)$$
    and $$\dfrac {dy}{d\theta}=3a\sin^2\theta. \cos \theta$$
    Therefore, $$\dfrac {dy}{dx}=\dfrac {3a\sin^2\theta. \cos \theta}{-3a\cos^2\theta. \sin \theta}$$ $$=-\tan \theta$$
  • Question 7
    1 / -0
    The function $$f(x) = \left\{\begin{matrix}x^{2}/a, & 0\leq x < 1\\ a, & 1\leq x < \sqrt {2}\\ \dfrac {2b^{2} - 4b}{x^{2}}, & \sqrt {2} \leq x < \infty\end{matrix}\right.$$ is continuous for $$0\leq x < \infty$$, then the most suitable values of $$a$$ and $$b$$ are
    Solution
    Since, $$f$$ is continuous for $$0\leq x < \infty, f$$ is continuous at $$x = 1$$.

    $$\displaystyle\lim_{x\rightarrow 1^-}\dfrac{x^2}{a}=a$$

    $$\therefore  a = \pm 1$$

    Since, $$f$$ is continuous at $$x = \sqrt {2}$$.

    $$\displaystyle\lim_{x\rightarrow \sqrt{2}}\dfrac{2b^2-4b}{x^2}=a$$

    $$\therefore \dfrac {2b^{2} - 4b}{2} = a$$

    $$\Rightarrow b^{2} - 2b = a$$

    When $$a = 1, b^{2} - 2b = 1$$

    $$\Rightarrow b = 1\pm \sqrt {2}$$

    When $$a = -1, b^{2} - 2b = -1$$

    $$\Rightarrow (b - 1)^{2} = 0 \Rightarrow b = 1$$

    Hence, $$a = -1$$ and $$b = 1$$ are most suitable values.
  • Question 8
    1 / -0
    If $$2^x + 2^y = 2^{x + y}$$, then $$\dfrac{dy}{dx}$$ is equal to
    Solution

    $${ 2 }^{ x }+{ 2 }^{ y }={ 2 }^{ x+y }$$

    Differentiating both sides

    $$\ln { 2 }. { 2 }^{ x }+\ln { 2 } .{ 2 }^{ y }\dfrac { dy }{ dx } =\ln { 2 }. { 2 }^{ x+y }\left( 1+\dfrac { dy }{ dx }  \right) \\ { 2 }^{ x }+{ 2 }^{ y }\dfrac { dy }{ dx } ={ 2 }^{ x+y }\left( 1+\dfrac { dy }{ dx }  \right) \\ { 2 }^{ x }+{ 2 }^{ y }\dfrac { dy }{ dx } ={ 2 }^{ x+y }+{ 2 }^{ x+y }\dfrac { dy }{ dx } \\ \left( { 2 }^{ y }-{ 2 }^{ x+y } \right) \dfrac { dy }{ dx } =\left( { 2 }^{ x+y }-{ 2 }^{ x } \right) \\ \dfrac { dy }{ dx } =\dfrac { { 2 }^{ x+y }-{ 2 }^{ x } }{ { 2 }^{ y }-{ 2 }^{ x+y } } \\ \dfrac { dy }{ dx } =\dfrac { { 2 }^{ x }({ 2 }^{ y }-1) }{ { 2 }^{ y }(1-{ 2 }^{ x }) } \\ \dfrac { dy }{ dx } ={ 2 }^{ x-y }\left( \dfrac { { 2 }^{ y }-1 }{ 1-{ 2 }^{ x } }  \right) $$

    So option $$C$$ is correct.

  • Question 9
    1 / -0
    If $$s=\sec ^{ -1 }{ \left( \cfrac { 1 }{ 2{ x }^{ 2 }-1 }  \right)  } $$ and $$t=\sqrt { 1-{ x }^{ 2 } } $$, then $$\cfrac { ds }{ dt } $$ at $$x=\cfrac { 1 }{ 2 }$$ is
    Solution
    Given, $$s=\sec ^{ -1 }{ \left( \cfrac { 1 }{ 2{ x }^{ 2 }-1 }  \right)  } $$

    $$\Rightarrow s=\cos ^{ -1 }{ (2{ x }^{ 2 }-1) } $$

    $$\left[ \because \cos ^{ -1 }{ x } =\sec ^{ -1 }{ \cfrac { 1 }{ x }  }  \right] $$

    $$\Rightarrow s=2\cos ^{ -1 }{ x } $$

    $$\left[ \because 2\cos ^{ -1 }{ x } =\cos ^{ -1 }{ (2{ x }^{ 2 }-1) }  \right] $$

    On differentiating w.r.t $$x$$ we get

    $$\cfrac { ds }{ dx } =2.\cfrac { -1 }{ \sqrt { 1-{ x }^{ 2 } }  } =\cfrac { -2 }{ \sqrt { 1-{ x }^{ 2 } }  } $$

    also $$\quad t=\sqrt { 1-{ x }^{ 2 } } $$

    On differentiating again

    $$\cfrac { dt }{ dx } =\cfrac { 1 }{ 2\sqrt { 1-{ x }^{ 2 } }  } (-2x)=\cfrac { -x }{ \sqrt { 1-{ x }^{ 2 } }  } $$

    Now, $$\cfrac { ds }{ dx } =\cfrac { ds }{ dx } \times \cfrac { dx }{ dt } $$

    $$=\cfrac { -2 }{ \sqrt { 1-{ x }^{ 2 } }  } \times \cfrac { \sqrt { 1-{ x }^{ 2 } }  }{ -x } =\cfrac { 2 }{ x } \quad $$

    $$\therefore { \left( \cfrac { ds }{ dt }  \right)  }_{ x=\cfrac { 1 }{ 2 }  }=\cfrac { 2 }{ 1/2 } =4$$
  • Question 10
    1 / -0
    If $$x = \sin t$$ and $$y = \tan t$$, then $$\dfrac{dy}{dx}$$ is equal to
    Solution
    Given, $$x = \sin  t$$ and $$y  = \tan t$$
    On differentiating both sides w.r.t. $$t$$ respectively, we get
    $$\dfrac{dx}{dt} = \cos  t$$ and $$\dfrac{dy}{dt} = \sec^2 t$$
    Therefore, $$ \dfrac{dy/dt}{dx/dt} = \dfrac{\sec^2 t}{\cos  t} = \dfrac{1}{\cos^3 t}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now