Self Studies

Continuity and ...

TIME LEFT -
  • Question 1
    1 / -0

    If $$(f(x))^{g(y)} = e^{f(x) - g(y)}$$ then $$\dfrac {dy}{dx} =$$.

  • Question 2
    1 / -0

    If $$x + y = \tan^{-1}y$$ and $$y'' =f(y) y'$$ then $$f(y) =$$

  • Question 3
    1 / -0

    If $$y=\sec^{-1}\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\sin^{-1}\dfrac{\sqrt{x}-1}{\sqrt{x}+1}$$, then $$\dfrac{dy}{dx}=$$

  • Question 4
    1 / -0

    Let $$f$$ be differentiable $$(x\epsilon R)$$, if $$f(2) = -2$$ and $$f'(x) \geq 2$$ for $$x\epsilon [1, 6]$$, then

  • Question 5
    1 / -0

    If $$y = \sin^{-1}\dfrac {1}{2}(\sqrt {1 + x} + \sqrt {1 - x})$$ then $$y' =$$

  • Question 6
    1 / -0

    Let $$g: [1, 6]\rightarrow [0, \infty]$$ be a real valued differentiable function satisfying $$g'(x) = \dfrac {2}{x + g(x)}$$ and $$g(1) = 0$$, the maximum value of $$g$$ cannot exceed.

  • Question 7
    1 / -0

    Let $$f:(-1,1)\rightarrow R$$ be the differentiable function with $$f(0)=-1$$ and $$f'(0)=1$$. 


    If $$g(x)={ \left( f(2f(x)+2 \right)  }^{ 2 }$$, then $$g'(0)=$$

  • Question 8
    1 / -0

    Determine the value of k for which the following function is continuous at $$x=3$$.

    $$f(x)=\dfrac{x^2-9}{x-3}, x \neq 3$$

    $$f(x)=k, x=3$$

  • Question 9
    1 / -0

    Let $$f(x)=4$$ and $$f'(x)=4$$, then $$\displaystyle \lim _{ x\rightarrow 2 }{ \cfrac { xf(2)-2f(x) }{ x-2 }  } $$

  • Question 10
    1 / -0

    If $$y = Tan^{-1} \left (\dfrac {\log (e/x^{2})}{\log ex^{2}}\right ) + Tan^{-1} \left (\dfrac {3 + 2\log x}{1 - 6\log x}\right )$$ then $$\left (\dfrac {dy}{dx}\right )_{x = 2} + \left (\dfrac {dy}{dx}\right )_{x = 3}$$.

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now