Self Studies

Continuity and ...

TIME LEFT -
  • Question 1
    1 / -0

    If $$y = {\left( {\sin \,x} \right)^x}$$, then $$\dfrac{{dy}}{{dx}} = $$

  • Question 2
    1 / -0

    If $$ f(x) = \bigg[ \frac {a+x}{1+x} \bigg]^{a+1+2x} $$ then $$ {a^{a+1}} \bigg [ 2 \ log \ a + {\frac {1-a ^2}{a}} \bigg]$$ is

  • Question 3
    1 / -0

    If a continuous function $$f$$ satisfies the relation 
    $$\overset{t}{\underset{0}{\int}} \left(f(x) - \sqrt{f'(x)}\right)dx = 0$$ and $$f(0) = \dfrac{-1}{2}$$
    Then $$f(x)$$ is equal to

  • Question 4
    1 / -0

    Differentiate with respect to $$x$$.
    $${x^{\cos x}} + \sin {x^{\tan x}}$$

  • Question 5
    1 / -0

    Differentiate $${x^{\tan x}} + {{\mathop{\rm tanx}\nolimits} ^x}$$ with respect to $$x$$

  • Question 6
    1 / -0

    If $$f:R \to R$$ be a differentiable function, such that $$f\left( {x + 2y} \right) = f\left( x \right) + f\left( {2y} \right) + 4xy$$ for all $$x,y \in R$$ then

  • Question 7
    1 / -0

    Let $$f\left( x \right) = \left\{ \begin{array}{l}\begin{array}{*{20}{c}}{ - 1\,\,\, - }&{2\,\,\, \le \,\,\,{\rm{x}}}&\rangle &0\end{array}\\\begin{array}{*{20}{c}}{{x^2}\,\, - }&{1,\,0\,\,\,\,\rangle }&{{\rm{x}}\,\,\rangle }&2\end{array}\end{array} \right.$$ and g $$\left( x \right) = \left| {f\left( x \right)\left| { + f\left| {x\left. {} \right|} \right.} \right.} \right.$$ then the number of points which g(x) is non differentiable,is

  • Question 8
    1 / -0

    If $$f(x)$$ is twice differentiable function such that $$f(a)=0, f(b)=2, f(c)=-1, f(d)=2, f(e)=0$$, where $$a<b<c<d<e$$, then the minimum number of zeroes of $$g(x)={(f'(x))}^{2}+f''(x).f(x)$$ in the interval $$[a, e]$$ is 

  • Question 9
    1 / -0

    Let $$f\left( x \right) =\begin{cases} x\quad \quad \quad \quad \quad \quad \quad \quad x<1 \\ 2-x\quad \quad \quad \quad \quad \quad 1\le x\le 2 \\ -2+3x-{ x }^{ 2 }\quad \quad \quad x>2 \end{cases}$$ then $$f(x)$$ is

  • Question 10
    1 / -0

    Let $$f(x)=\dfrac{1}{ax+b}$$ then $$f''(0)=$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now