Self Studies

Continuity and Differentiability Test - 24

Result Self Studies

Continuity and Differentiability Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$y = {\left( {\sin \,x} \right)^x}$$, then $$\dfrac{{dy}}{{dx}} = $$
    Solution
    given $$y=(\sin x)^x$$
    applying $$\ln$$ on both sides we get
    $$\ln y=x\ln(\sin x)$$
    differentiating both sides wrt $$x$$
    $$\dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{d}{dx}\left(x\ln(\sin x)\right)$$
    $$\dfrac{1}{y}\dfrac{dy}{dx}=\ln(\sin x)+x\dfrac{1}{\sin x}\cos x$$
    $$\dfrac{dy}{dx}=y\left(\ln(\sin x)+x\cot x\right)$$
    $$\therefore \dfrac{dy}{dx}=(\sin x)^x\left(x\cot x\right) +  (\sin x)^x \ln(\sin x)$$
  • Question 2
    1 / -0
    If $$ f(x) = \bigg[ \frac {a+x}{1+x} \bigg]^{a+1+2x} $$ then $$ {a^{a+1}} \bigg [ 2 \ log \ a + {\frac {1-a ^2}{a}} \bigg]$$ is
    Solution

  • Question 3
    1 / -0
    If a continuous function $$f$$ satisfies the relation 
    $$\overset{t}{\underset{0}{\int}} \left(f(x) - \sqrt{f'(x)}\right)dx = 0$$ and $$f(0) = \dfrac{-1}{2}$$
    Then $$f(x)$$ is equal to
    Solution
    Given,
    $$\overset{t}{\underset{0}{\int}} \left(f(x) - \sqrt{f'(x)}\right)dx = 0$$
    Now using Leinbnitz's rule of differentiation under integral sign we get,
    $$f(t)-\sqrt{f'(t)}=0$$
    or, $$\dfrac{f'(t)}{[f(t)]^2}=1$$
    or, $$\dfrac{d[f(t)]}{[f(t)]^2}=dt$$
    Now integrating both sides we get,
    $$-\dfrac{1}{f(t)}=t+c$$ [ Where $$c$$ being integrating constant]......(1)
    Given,
    $$f(0)=-\dfrac{1}{2}$$.
    Using this condition in (1) we get,
    $$c=2$$.
    So the solution takes the form,
    $$-\dfrac{1}{f(t)}=t+2$$
    or, $$f(t)=-\dfrac{1}{t+2}$$.
    So, $$f(x)=-\dfrac{1}{x+2}$$.
  • Question 4
    1 / -0
    Differentiate with respect to $$x$$.
    $${x^{\cos x}} + \sin {x^{\tan x}}$$
    Solution
    let $$y=x^{\cos x} +\sin x ^{\tan x}$$
    let $$h=x^{\cos x}$$       $$\dfrac{d}{dx}(f(x)g(x))=f'(x)g(x)+f'(x)f(x)$$
    applying $$log$$ on both sides we get
    $$\log h=\cos x\log x$$
    differentiate on both sides wrt $$x$$
    $$\dfrac{1}{h}\dfrac{dh}{dx}=-\sin x\log x+\dfrac{\cos x}{x}$$
    $$\therefore \dfrac{dh}{dx}=x^{\cos x}\left(\dfrac{\cos x}{x}-\sin x \log x\right)$$
    let $$t=\sin x^{\tan x}$$
    applying $$\log $$ on both sides 
    $$\dfrac{1}{t}\dfrac{dt}{dx}=\sec ^2x\log {(\sin x)}+\dfrac{\tan x}{\sin x}(\cos x)$$
    $$\therefore \dfrac{dt}{dx}=\sin x^{\tan x}\left(1+\sec ^2x \log (\sin x)\right)$$
    $$y=h+t$$
    $$\implies \dfrac{dy}{dx}=\dfrac{dh}{dx}+\dfrac{dt}{dx}$$
    $$\therefore \dfrac{dy}{dx}=x^{\cos x}\left(\dfrac{\cos x}{x}-\sin x\log x\right)+\sin x^{\tan x}\left(1+\sec ^2x\log (\sin x)\right)$$
  • Question 5
    1 / -0
    Differentiate $${x^{\tan x}} + {{\mathop{\rm tanx}\nolimits} ^x}$$ with respect to $$x$$
    Solution

  • Question 6
    1 / -0
    If $$f:R \to R$$ be a differentiable function, such that $$f\left( {x + 2y} \right) = f\left( x \right) + f\left( {2y} \right) + 4xy$$ for all $$x,y \in R$$ then
    Solution
    $$f(x+2y)=f(x)+f(2y)+4xy$$
    partially difference w.r.t $$x$$
    $$f'(x+2y)=f'(x)+4y$$
    At $$x=0$$ & $$y=1/2$$
    $$f'(1)=f'(0)+2$$
    $$C$$ is correct
  • Question 7
    1 / -0
    Let $$f\left( x \right) = \left\{ \begin{array}{l}\begin{array}{*{20}{c}}{ - 1\,\,\, - }&{2\,\,\, \le \,\,\,{\rm{x}}}&\rangle &0\end{array}\\\begin{array}{*{20}{c}}{{x^2}\,\, - }&{1,\,0\,\,\,\,\rangle }&{{\rm{x}}\,\,\rangle }&2\end{array}\end{array} \right.$$ and g $$\left( x \right) = \left| {f\left( x \right)\left| { + f\left| {x\left. {} \right|} \right.} \right.} \right.$$ then the number of points which g(x) is non differentiable,is
    Solution

  • Question 8
    1 / -0
    If $$f(x)$$ is twice differentiable function such that $$f(a)=0, f(b)=2, f(c)=-1, f(d)=2, f(e)=0$$, where $$a<b<c<d<e$$, then the minimum number of zeroes of $$g(x)={(f'(x))}^{2}+f''(x).f(x)$$ in the interval $$[a, e]$$ is 
    Solution

  • Question 9
    1 / -0
    Let $$f\left( x \right) =\begin{cases} x\quad \quad \quad \quad \quad \quad \quad \quad x<1 \\ 2-x\quad \quad \quad \quad \quad \quad 1\le x\le 2 \\ -2+3x-{ x }^{ 2 }\quad \quad \quad x>2 \end{cases}$$ then $$f(x)$$ is
    Solution
    $$f\left(x \right)=\begin{Bmatrix} x \quad\qquad x<1\\ 2-x\qquad 1\le x\le 2 \\ -2+3x-x^{2} \quad x>2\end{Bmatrix}$$

    At $$x=1$$
    L.H.D(Left Hand differentiabilty)
    $$\displaystyle \lim_{x\to\ 1^{-}}f^{'}(x)=1$$

    R.H.D(Right Hand differentiability)
    $$\displaystyle \lim_{x\to\ 1^{+}}f^{'}(x)=-1$$

    $$\therefore L.H.D\ne R.H.D(\therefore$$ It is non-differentiable at $$x=1$$)

    At $$x=2$$
    L.H.D(Left Hand differentiabilty)
    $$\displaystyle \lim_{x\to\ 2^{-}}f^{'}(x)=-1$$

    R.H.D(Right Hand differentiability)
    $$\displaystyle \lim_{x\to\ 2^{+}}f^{'}(x)=\lim_{x\to\ 2^{+}}3-2x=-1$$

    $$\therefore R.H.D=L.H.D(at \,x=2)$$
    $$(x)$$ is differentiable at $$x=2$$
  • Question 10
    1 / -0
    Let $$f(x)=\dfrac{1}{ax+b}$$ then $$f''(0)=$$
    Solution
    Given,
    $$f(x)=\dfrac{1}{ax+b}$$
    Now differentiating both sides with respect to $$x$$ we get,
    $$f'(x)=-\dfrac{a}{(ax+b)^2}$$
    Again differentiating both sides with respect to $$x$$ we get,
    $$f''(x)=\dfrac{2a^2}{(ax+b)^3}$$
    So $$f''(0)=\dfrac{2a^2}{b^3}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now