Self Studies

Continuity and ...

TIME LEFT -
  • Question 1
    1 / -0

    If $$y=(x^{x})^{x}$$ then $$\dfrac {dy}{dx}=$$

  • Question 2
    1 / -0

    If $$ x=a(\cos\theta+log\ \tan\dfrac{\theta}{2})$$ and $$y=a\sin\theta$$, then$$\dfrac{dy}{dx}$$ is equal to

  • Question 3
    1 / -0

    If $$f(x)=\dfrac{a^x}{x^a}$$ then $$f'(a)=$$?

  • Question 4
    1 / -0

    If $$y=\tan^{-1}x+\cot^{-1}x+\sec^{-1}x+\csc^{-1}x$$,then $$\dfrac {dy}{dx}$$ is equal to

  • Question 5
    1 / -0

    Solve this:-$$\dfrac{d}{{dx}}\left( {\tan^{ - 1}\left( {\sinh \,X} \right)} \right) = $$

  • Question 6
    1 / -0

    If $$f(x)=\sin^4x+\cos^4x$$. Then $$f$$ is an increasing function in the interval

  • Question 7
    1 / -0

    Let $$f(x)$$ be a function defined on$$(-a,a)$$ with $$a > 0$$. Amuse that $$f(x)$$ is continuous at $$x=0$$ and $$\underset{x\to 0}{\lim}\dfrac {f(x)-f(kx)}{x}=\alpha$$, where $$k \in (0,1)$$ then compute $$f'(0^{+})$$ and $$f'(0^{-})$$, and comment upon the differentiablity of $$f$$ at $$x=0$$? Denote $$\alpha$$.

  • Question 8
    1 / -0

    Solve:

    $$ \dfrac{\log_{xy}xy}{\log_{xy} \, xyz} \, + \, \dfrac{\log_{yz}yz}{\log_{yz} \, xyz} \, + \, \dfrac{\log_{zx}zx}{\log_{zx} \, xyz} $$

  • Question 9
    1 / -0

    If $$x=a\left(\cos t+\log \tan\dfrac{t}{2}\right), y=a\sin t$$, then evaluate $$\dfrac{d^2y}{dx^2}$$ at $$t=\dfrac{\pi}{3}$$.

  • Question 10
    1 / -0

    The derivative of $$\sin^{-1}\left (\dfrac {2x}{1 + x^{2}}\right )$$ with respect to $$\tan^{-1} \left (\dfrac {2x}{1 - x^{2}}\right )$$is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now