Self Studies

Continuity and Differentiability Test - 25

Result Self Studies

Continuity and Differentiability Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$y=(x^{x})^{x}$$ then $$\dfrac {dy}{dx}=$$
    Solution

    We have,

    $$ y={{\left( {{x}^{x}} \right)}^{x}} $$

    $$ y={{x}^{{{x}^{2}}}} $$

     

    On taking $$\log $$ both sides, we get

    $$\log y={{x}^{2}}\log x$$                                               …… (1)

     

    On differentiating w.r.t $$x$$, we get

    $$ \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{{{x}^{2}}}{x}+\log x\left( 2x \right) $$

    $$ \dfrac{1}{y}\dfrac{dy}{dx}=x+2x\log x $$

    $$ \dfrac{dy}{dx}=y\left( x+2x\log x \right) $$

    $$ \dfrac{dy}{dx}={{\left( {{x}^{x}} \right)}^{x}}\left( x+2x\log x \right) $$

    $$ \dfrac{dy}{dx}=x{{\left( {{x}^{x}} \right)}^{x}}\left( 1+2\log x \right) $$

     

    Hence, this is the answer.

  • Question 2
    1 / -0
    If $$ x=a(\cos\theta+log\ \tan\dfrac{\theta}{2})$$ and $$y=a\sin\theta$$, then$$\dfrac{dy}{dx}$$ is equal to
    Solution
    $$x=a(\cos\theta+\log\tan\cfrac{\theta}{2})$$
    $$\cfrac{dx}{d\theta}$$$$=a(-\sin\theta+\cfrac{\sec^2 \cfrac{\theta}{2}}{2\tan\cfrac{\theta}{2}})$$
    $$=a(-\sin\theta+\cfrac{1}{\sin\theta})$$
    $$y=a(sin\theta)$$
    $$\cfrac{dy}{d\theta}$$$$=a(cos\theta)$$
    $$\cfrac{dy}{dx}=\cfrac{\cfrac{dy}{d\theta}}{\cfrac{dx}{d\theta}}$$
    $$=\cfrac{a\sin\theta}{-a(\sin\theta-\cfrac{1}{\sin\theta})}$$
    $$=\cfrac{\sin\theta}{\cos\theta}$$
    $$=\tan\theta$$
  • Question 3
    1 / -0
    If $$f(x)=\dfrac{a^x}{x^a}$$ then $$f'(a)=$$?
    Solution
    According to question,

    $$ f' (x)= \dfrac{ a^{x} loga x^{a} - x^{a+1} a^{x}  }{ x^{2a} } $$

    $$ \Rightarrow   f' (a)= \dfrac{ a^{a} loga. a^{a} - a^{a+1} a^{a}  }{ a^{2a} }$$

    Hence,

     $$ \Rightarrow  f' (a)=loga-a$$
  • Question 4
    1 / -0
    If $$y=\tan^{-1}x+\cot^{-1}x+\sec^{-1}x+\csc^{-1}x$$,then $$\dfrac {dy}{dx}$$ is equal to
    Solution

    Consider the given equation.

    $$y={{\tan }^{-1}}x+{{\cot }^{-1}}x+{{\sec }^{-1}}x+{{\csc }^{-1}}x$$

     

    On differentiating w.r.t $$x$$, we get

    $$ \dfrac{dy}{dx}=\dfrac{1}{1+{{x}^{2}}}-\dfrac{1}{1+{{x}^{2}}}+\dfrac{1}{\left| x \right|\sqrt{{{x}^{2}}-1}}-\dfrac{1}{\left| x \right|\sqrt{{{x}^{2}}-1}}$$

    $$ \dfrac{dy}{dx}=0$$

     

    Hence, this is the answer.

  • Question 5
    1 / -0
    Solve this:-$$\dfrac{d}{{dx}}\left( {\tan^{ - 1}\left( {\sinh \,X} \right)} \right) = $$
    Solution

  • Question 6
    1 / -0
    If $$f(x)=\sin^4x+\cos^4x$$. Then $$f$$ is an increasing function in the interval
    Solution
    $$f{\left( x \right)} = \sin^{4}{x} + \cos^{4}{x}$$
    Diferentiating $$f{\left( x \right)}$$ w.r.t. $$x$$, we have
    $$f'{\left( x \right)} = 4 \sin^{3}{x} \cos{x} + 4 \cos^{3}{x} \left( -\sin{x} \right)$$
    $$f'{\left( x \right)} = 4 \sin^{3}{x} \cos{x} - 4 \cos^{3}{x} \sin{x}$$
    $$f'{\left( x \right)} = 4 \sin{x} \cos{x} \left( \sin^{2}{x} - \cos^{2}{x} \right)$$
    $$f'{\left( x \right)} = 2 \sin{2x} \left( - \cos{2x} \right)$$
    $$f'{\left( x \right)} = - \sin{4x}$$ 
    For $$f{\left( x \right)}$$ to be an increasing function,
    $$f'{\left( x \right)} > 0$$
    $$\Rightarrow - \sin{4x} > 0$$
    $$\Rightarrow \sin{4x} < 0$$
    $$\Rightarrow \pi < 4x < 2 \pi$$
    $$\Rightarrow \cfrac{\pi}{4} < x < \cfrac{\pi}{2}$$
    Hence $$f{\left( x \right)}$$ will be increasing for all $$x \in \left[ \cfrac{\pi}{4}, \cfrac{\pi}{2} \right]$$.
  • Question 7
    1 / -0
    Let $$f(x)$$ be a function defined on$$(-a,a)$$ with $$a > 0$$. Amuse that $$f(x)$$ is continuous at $$x=0$$ and $$\underset{x\to 0}{\lim}\dfrac {f(x)-f(kx)}{x}=\alpha$$, where $$k \in (0,1)$$ then compute $$f'(0^{+})$$ and $$f'(0^{-})$$, and comment upon the differentiablity of $$f$$ at $$x=0$$? Denote $$\alpha$$.
    Solution
    $$\underset{x \to 0^-}{\lim} f(x) = \underset{x\to 0}{\lim} + f(x)$$
    $$\underset{x \to 0^-}{\lim} f'(x) = \underset{x\to 0}{\lim} + f'(x)$$
    $$f'(0^=) = f'(0^-)$$
    $$\underset{x\to 0}{\lim}\dfrac {f(x)-f(kx)}{x}=\alpha$$   ...(1)
    $$f'(0^+)= \underset{x\to 0}{\lim} \dfrac{f(x) - f(0)}{x}$$
    $$f' (0^-) = \underset{x\to 0}{\lim} \dfrac{f(x) - f(0)}{-x}$$
    From eqn (1)
    $$\underset{x\to 0}{\lim} \dfrac{f(x)+f(0) - f(o) - f(kx)}{x}$$
    $$\underset{x\to o}{\lim}\dfrac{f(x) - f(0)}{x} \cdot \dfrac{f(kx) - f(0)}{kx} \times k = \alpha$$
  • Question 8
    1 / -0
    Solve:
    $$ \dfrac{\log_{xy}xy}{\log_{xy} \, xyz} \, + \, \dfrac{\log_{yz}yz}{\log_{yz} \, xyz} \, + \, \dfrac{\log_{zx}zx}{\log_{zx} \, xyz} $$
    Solution
    We have,
    $$\Rightarrow \dfrac{\log_{xy}xy}{\log_{xy} \, xyz} \, + \, \dfrac{\log_{yz}yz}{\log_{yz} \, xyz} \, + \, \dfrac{\log_{zx}zx}{\log_{zx} \, xyz} $$

    We know that
    $$\dfrac{\log_a m}{\log_a n}=\log_n m$$

    Therefore,
    $$\Rightarrow \log_{xyz}xy\, + \, \log_{xyz}yz\, + \,\log_{xyz}zx$$
    $$\Rightarrow \log_{xyz}(x^2y^2z^2)$$
    $$\Rightarrow \log_{xyz}(xyz)^2$$
    $$\Rightarrow 2\log_{xyz}(xyz)$$
    $$\Rightarrow 2$$

    Hence, this is the answer.
  • Question 9
    1 / -0
    If $$x=a\left(\cos t+\log \tan\dfrac{t}{2}\right), y=a\sin t$$, then evaluate $$\dfrac{d^2y}{dx^2}$$ at $$t=\dfrac{\pi}{3}$$.
    Solution
    $$x = a(cost+logtan\cfrac{t}{2})$$
    $$1 = a(-sint+\cfrac{sec^2\cfrac{t}{2}}{2tan\cfrac{t}{2}}) \cfrac{dt}{dx}$$
    $$\cfrac{dt}{dx} = \cfrac{1}{a(-sint+\cfrac{sec^2\cfrac{t}{2}}{2tan\cfrac{t}{2}})}$$ 
    $$\cfrac{dy}{dt} = acost$$

    $$\cfrac{dy}{dx} = \cfrac{cost}{(-sint+\cfrac{sec^2\cfrac{t}{2}}{2tan\cfrac{t}{2}})}$$

    $$\cfrac{dy}{dx} = \cfrac{cost}{(-sint+\cfrac{1}{2sin\cfrac{t}{2}cos\cfrac{t}{2}})}$$
    $$\cfrac{dy}{dx} = \cfrac{cost}{(-sint+\cfrac{1}{sint})}$$
    $$\cfrac{dy}{dx} = \cfrac{costsint}{1-sin^2t}$$
    $$\cfrac{dy}{dx} = tant$$
    $$\cfrac{d^2y}{dx^2} = sec^2t \cfrac{dt}{dx}$$
    At $$t = \cfrac{\pi}{3}$$ 
    $$\cfrac{d^2y}{dx^2} = \cfrac{4}{a(-sint+\cfrac{sec^2\cfrac{t}{2}}{2tan\cfrac{t}{2}})} = \cfrac{8\sqrt3}{a}$$

  • Question 10
    1 / -0
    The derivative of $$\sin^{-1}\left (\dfrac {2x}{1 + x^{2}}\right )$$ with respect to $$\tan^{-1} \left (\dfrac {2x}{1 - x^{2}}\right )$$is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now