$$\alpha =a\sec^2 \theta , \ y=a\tan 3 \theta ,\ \dfrac {d^3y}{dx^3}=?$$
$$\dfrac {d^3y}{dx^3}=\dfrac {}d^3\theta{d\theta ^3} \dfrac {d^3\theta}{dx^3}$$
$$\dfrac {dy}{d\theta} =\dfrac {d}{d\theta} (a\tan ^3\theta) =a.3\tan^2 \theta \sec^2 \theta$$
$$\dfrac {d^2 y}{d\theta ^2}=a^3 (\sec^2 \theta. \tan \theta .\sec^2 \theta +\tan^2 \theta .2\sec \theta (\sec \theta \tan \theta))$$
$$=3a (2\tan \theta \sec^4\theta +2\tan^3 \theta \sec^2\theta )$$
$$\dfrac {dy}{d\theta^2} =60 [(\tan \theta .4\sec^3\theta \sec \theta +\sec^4 \theta .\sec^2 \theta) +(\tan^3\theta .2\sec \theta \sec \theta \tan \theta +\sec^2 \theta .3\tan^2 \theta \sec^2 \theta)]$$
$$=60 [5\sec^4\theta +\sec^6 \theta +2\tan^4 \theta \sec^2\theta +3\tan^2 \theta \sec^2 \theta]$$
$$=60[7\sec^4\theta \tan^2 \theta +2\tan^4 \theta \sec^2 \theta +\sec^6 \theta]$$
$$\dfrac {dx}{d\theta} \Rightarrow \ \dfrac {d}{d\theta}(a\sec^2 \theta)=a.2\sec \theta \sec \theta \tan \theta$$
$$=2a(\sec^2\theta \tan \theta)$$
$$\dfrac {d^2x}{d\theta} =2a(\tan \theta .2\sec \theta \tan \theta +\sec^2 \theta -\sec^2 \theta )$$
$$=2a((2\tan^2 \theta \sec^2 \theta)+\sec ^4 \theta)$$
$$\dfrac {d^3 x}{d\theta ^3}=2a[(2\tan^2\theta 32\sec \theta \sec \theta \tan \theta+2\sec^2 \theta +2\sec^2\theta 2\tan \theta \sec^2 \theta )+ 4\sec^3\theta \sec \theta \tan \theta]$$
$$=2a [4\tan^3\theta \sec^2\theta +4\sec \theta \sec^4 \theta+4\tan \theta \sec^3\theta]$$
$$=2a.4 [\tan^3\theta \sec^2\theta +2\tan \theta \sec^4 \theta]$$
$$\dfrac {d^3y}{dx^3}\ \Rightarrow \ \dfrac {6a (7\sec^4 \theta \tan^2 \theta +2\tan^4 \theta \sec^2\theta +\sec^6 \theta)}{8a (\tan \theta \sec^2 \theta [\tan^2\theta +2\sec^2 \theta])}$$
$$\Rightarrow \ \dfrac {3}{4} \dfrac {\sec^2\theta [7 \sec^2 \theta \tan ^2 \theta + 2\tan ^4 \theta +\sec^4 \theta]}{\tan \theta \sec^4 \theta (\tan ^2\theta +2 \sec^2 \theta)}$$
$$\Rightarrow \ (Since\ 1+\tan^2\theta =\sin^2\theta)$$
$$\Rightarrow \ \dfrac {3}{4} \left [\dfrac {7(1+\tan^2\theta) (\tan^2 \theta)+2\tan^2 \theta +(1+\tan^2\theta)}{\tan \theta (\tan \theta+2(1+\tan \theta))}\right]$$
on further simplyfying we get
$$\Rightarrow \ 3\sec^2 \theta \tan \theta$$