Self Studies

Continuity and Differentiability Test - 26

Result Self Studies

Continuity and Differentiability Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$x=a\sec^{2}\theta$$, $$y=a\tan^{3}\theta$$ then $$\dfrac {d^{3}y}{dx^{3}}$$
    Solution
    $$\alpha =a\sec^2 \theta , \ y=a\tan 3 \theta ,\ \dfrac {d^3y}{dx^3}=?$$
    $$\dfrac {d^3y}{dx^3}=\dfrac {}d^3\theta{d\theta ^3} \dfrac {d^3\theta}{dx^3}$$
    $$\dfrac {dy}{d\theta} =\dfrac {d}{d\theta} (a\tan ^3\theta) =a.3\tan^2 \theta \sec^2 \theta$$
    $$\dfrac {d^2 y}{d\theta ^2}=a^3 (\sec^2 \theta. \tan \theta .\sec^2 \theta +\tan^2 \theta .2\sec \theta (\sec \theta \tan \theta))$$
    $$=3a (2\tan \theta \sec^4\theta +2\tan^3 \theta \sec^2\theta )$$
    $$\dfrac {dy}{d\theta^2} =60 [(\tan \theta .4\sec^3\theta \sec \theta +\sec^4 \theta .\sec^2 \theta) +(\tan^3\theta .2\sec \theta \sec \theta \tan \theta +\sec^2 \theta .3\tan^2 \theta \sec^2 \theta)]$$
    $$=60 [5\sec^4\theta +\sec^6 \theta +2\tan^4 \theta \sec^2\theta +3\tan^2 \theta \sec^2 \theta]$$
    $$=60[7\sec^4\theta \tan^2 \theta +2\tan^4 \theta \sec^2 \theta +\sec^6 \theta]$$
    $$\dfrac {dx}{d\theta} \Rightarrow \ \dfrac {d}{d\theta}(a\sec^2 \theta)=a.2\sec \theta \sec \theta \tan \theta$$
    $$=2a(\sec^2\theta \tan \theta)$$
    $$\dfrac {d^2x}{d\theta} =2a(\tan \theta .2\sec \theta \tan \theta +\sec^2 \theta -\sec^2 \theta )$$
    $$=2a((2\tan^2 \theta \sec^2 \theta)+\sec ^4 \theta)$$
    $$\dfrac {d^3 x}{d\theta ^3}=2a[(2\tan^2\theta 32\sec \theta \sec \theta \tan \theta+2\sec^2 \theta +2\sec^2\theta 2\tan \theta \sec^2 \theta )+ 4\sec^3\theta \sec \theta \tan \theta]$$
    $$=2a [4\tan^3\theta \sec^2\theta +4\sec \theta \sec^4 \theta+4\tan \theta \sec^3\theta]$$
    $$=2a.4 [\tan^3\theta \sec^2\theta +2\tan \theta \sec^4 \theta]$$
    $$\dfrac {d^3y}{dx^3}\ \Rightarrow \ \dfrac {6a (7\sec^4 \theta \tan^2 \theta +2\tan^4 \theta \sec^2\theta +\sec^6 \theta)}{8a (\tan \theta \sec^2 \theta [\tan^2\theta +2\sec^2 \theta])}$$
    $$\Rightarrow \ \dfrac {3}{4} \dfrac {\sec^2\theta [7 \sec^2 \theta \tan ^2 \theta + 2\tan ^4 \theta +\sec^4 \theta]}{\tan \theta \sec^4 \theta (\tan ^2\theta +2 \sec^2 \theta)}$$
    $$\Rightarrow \ (Since\ 1+\tan^2\theta =\sin^2\theta)$$
    $$\Rightarrow \ \dfrac {3}{4} \left [\dfrac {7(1+\tan^2\theta) (\tan^2 \theta)+2\tan^2 \theta +(1+\tan^2\theta)}{\tan \theta (\tan \theta+2(1+\tan \theta))}\right]$$
    on further simplyfying we get
    $$\Rightarrow \ 3\sec^2 \theta \tan \theta$$

  • Question 2
    1 / -0
    The value of k which makes $$f(x)=\left\{\begin{matrix} \sin\dfrac{1}{x}, x\neq 0\\ k, x=0\end{matrix}\right.$$ continuous at $$x=0$$ is?
    Solution
    Then k=?
    $$\begin{matrix} \Rightarrow f\left( 0 \right) =k \\ \Rightarrow { f\left( { { 0^{ + } } } \right)  }_{ \lim  \, \, x\to { 0^{ + } } }={ f\left( { { 0^{ +h } } } \right)  }_{ \lim  \, \, h\to 0 }={ \sin   }_{ \lim  \, \, h\to 0 }\dfrac { 1 }{ { (o+h) } } =\sin  0 \\ \Rightarrow { f\left( { { 0^{ - } } } \right)  }_{ \lim  \, \, x\to { 0^{ - } } }={ f\left( { { 0^{ -h } } } \right)  }_{ \lim  \, \, h\to 0 }={ \sin   }_{ \lim  \, \, h\to 0 }\dfrac { 1 }{ { (o-h) } } =\sin  0 \\ \Rightarrow f\left( 0 \right) =f\left( { { 0^{ + } } } \right) =f\left( { { 0^{ - } } } \right) =f\left( 0 \right) =k=0 \\  \end{matrix}$$
    the value of $$k$$ is zero 
  • Question 3
    1 / -0
    If $$x=\cos ec \theta-\sin \theta,y=\cos ec^{n}\theta-\sin^{n}\theta$$ then $$(x^{2}+4)\left(\dfrac {dy} {dx}\right)^{2}-n^{2}y^{2}=$$ 
    Solution
    $$ x = cosec \theta - sin\theta $$
    $$ x^2+4 = (cosec\theta - sin\theta)^2+4 $$
    $$ = (cosec\theta + sin\theta)^2$$
    $$ y = cosec^n \theta - sin^n \theta $$
    $$ y^2+4 = (cosec^n \theta + sin^n \theta)^2$$
    $$ \dfrac{dy}{d\theta} = n. cosec^{n} \theta (-cosec \theta cot \theta)+ nsin^{n-1}\theta. cos\theta.$$
    $$ = n cot \theta (cosec^n\theta+sin^n \theta)$$
    $$ \dfrac{dx}{d\theta} = cot\theta cosec\theta-cos \theta $$
    $$ = -cot\theta  =  (cosec \theta + sin\theta )$$
    $$ \dfrac{dy}{dx} = \dfrac{ncot \theta}{-cot \theta} (\dfrac{cosec^n \theta + sin^n \theta}{ cosec\theta + sin\theta}) $$
    $$ (\dfrac{dy}{dx})^{2} = \dfrac{n^2(cosec^n \theta + sin^n \theta )^{2}}{(-1)^2 (cosec \theta + sin \theta)^{2}}$$
    $$ = n^2 (\dfrac{y^2+4}{x^2+4 })$$
    $$ (x^2+4) (\dfrac{dy}{dx})^2 - x^{2}y^{2} = 4x^{2}$$
    option D

  • Question 4
    1 / -0
    Let $$f(x) = \underset{0}{\overset{x}{\int}} |2t - 3| dt$$, then $$f$$ is 
  • Question 5
    1 / -0
    Let $$f(x) = \left\{\begin{matrix}x &x < 1 \\ 2 - x & 1 \leq x \leq 2\\ -2 + 3x - x^{2} & x > 2\end{matrix}\right.$$ then $$f(x)$$ is
    Solution

  • Question 6
    1 / -0

    Directions For Questions

    Let two functions $$f\left( x \right) =\begin{cases} { e }^{ x }+a; & x\ge 0 \\ { e }^{ -x }+b; & x<0 \end{cases}$$ & $$g\left( x \right) =\begin{cases} c\sin { x } ; & x\ge 0 \\ d+\cos { x } ; & x<0 \end{cases}$$ are such that $$f(x)+g(x)$$ & $$f(x).g(x)$$ both are differentiable at $$x=0$$.
    On  the basis of above information, answer the following questions :

    ...view full instructions

    Range of function $$f(x)-g(x)$$ in [-$$\pi, \pi$$] is-
  • Question 7
    1 / -0

    Directions For Questions

    Let two functions $$f\left( x \right) =\begin{cases} { e }^{ x }+a; & x\ge 0 \\ { e }^{ -x }+b; & x<0 \end{cases}$$ & $$g\left( x \right) =\begin{cases} c\sin { x } ; & x\ge 0 \\ d+\cos { x } ; & x<0 \end{cases}$$ are such that $$f(x)+g(x)$$ & $$f(x).g(x)$$ both are differentiable at $$x=0$$.
    On  the basis of above information, answer the following quaestions :

    ...view full instructions

    Which of the following is NOT CORRECT-
  • Question 8
    1 / -0
    $$\sqrt{1+\left(\dfrac{d^2y}{dx^2}\right)^3}=\left(2+\dfrac{dy}{dx}\right)^{1/3}$$
    Find it's order and degree.
    Solution

    Consider the given equation.

    $$\sqrt{1+{{\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)}^{3}}}={{\left( 2+\dfrac{dy}{dx} \right)}^{1/3}}$$

     

    On squaring both sides, we get

    $$1+{{\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)}^{3}}={{\left( 2+\dfrac{dy}{dx} \right)}^{2/3}}$$

     

    Here, Order $$=2$$ and Degree $$=3$$

     

    Hence, this is the answer.

  • Question 9
    1 / -0
    If $$x$$ $$sin$$ $$y$$$$=3 sin y$$ $$+$$ $$4 cos y$$, then $$\frac { dy }{ dx } =$$
    Solution
    $$x\sin{y}=3\sin{y}+4\cos{y}$$
    $$\Rightarrow\,\left(x-3\right)\sin{y}=4\cos{y}$$
    $$\Rightarrow\,x-3=4\dfrac{\cos{y}}{\sin{y}}$$
    $$\Rightarrow\,x-3=4\cot{y}$$
    Differentiating both sides w.r.t $$x$$
    $$\Rightarrow\,1=4\left(-{\csc}^{2}{y}\right)\dfrac{dy}{dx}$$
    $$\Rightarrow\,\dfrac{dy}{dx}=\dfrac{-1}{4{\csc}^{2}{y}}$$
    $$\therefore\,\dfrac{dy}{dx}=\dfrac{-{\sin}^{2}{y}}{4}$$
  • Question 10
    1 / -0

    Directions For Questions

    Let two functions $$f\left( x \right) =\begin{cases} { e }^{ x }+a; & x\ge 0 \\ { e }^{ -x }+b; & x<0 \end{cases}$$ & $$g\left( x \right) =\begin{cases} c\sin { x } ; & x\ge 0 \\ d+\cos { x } ; & x<0 \end{cases}$$ are such that $$f(x)+g(x)$$ & $$f(x).g(x)$$ both are differentiable at $$x=0$$.
    On  the basis of above information, answer the following quaestions :

    ...view full instructions

    Function $$f(x)-g(x)$$ is-
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now