Self Studies

Continuity and Differentiability Test - 28

Result Self Studies

Continuity and Differentiability Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$f$$ differentiable at $$x=0$$ and $$f'\left( 0 \right) = 1$$. Then $$\mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( h \right) - f\left( { - 2h} \right)}}{h} = $$=
    Solution
    $$\begin{matrix} { \lim   }_{ h\to 0 }\dfrac { { F\left( h \right) -f\left( { -2h } \right)  } }{ h }  \\ \Rightarrow { \lim   }_{ h\to 0 }\dfrac { { f'\left( h \right) +2f'\left( { -2h } \right)  } }{ 1 } \, \, \left[ { \because f\left( 0 \right) =1 } \right]  \\ \to f'\left( 0 \right) +2f'\left( 0 \right)  \\ =1+2+3=6 \\  \end{matrix}$$
  • Question 2
    1 / -0
    Let $$f(x)$$ be differentiable function such that $$f\left(\dfrac{x+y}{1-xy}\right)=f(x)+f(y) \forall x$$ and $$y$$. If $$\underset { x\rightarrow 0 }{ lt } \dfrac { f\left( x \right)  }{ x } =\dfrac { 1 }{ 3 }$$ then $$f(1)$$ equals 
    Solution
    We have,
    $$f\left( {\dfrac{{x + y}}{{1 - xy}}} \right) = f\left( x \right) + f\left( y \right)\,\,\,\forall {x^2}y$$
    $$ \Rightarrow f\left( x \right) = k{\tan ^{ - 1}}\left( x \right)$$
    $$\mathop {\lim }\limits_{x \to 0} \dfrac{{k{{\tan }^{ - 1}}x}}{x} = \dfrac{1}{3}$$
    $$k = \dfrac{1}{3}$$
    $$f\left( x \right) = \dfrac{1}{3}{\tan ^{ - 1}}x$$
    $$f\left( 1 \right) = \dfrac{1 }{{12}}$$

    Hence, this is the answer.
  • Question 3
    1 / -0
    If $$f (x)$$ is differentiable everywhere, then:
    Solution
    Given: $$f(x)$$ is differentiable everywhere

    $$|f|$$ is differentiable everywhere

    Let $$f(x)=x$$

    $$\Rightarrow |f(x)|=|x|$$

    $$\therefore |f|$$ is not differentiable everywhere

    $$|f|^2$$ is differentiable everywhere

    Let $$f(x)=x$$

    $$\Rightarrow |f(x)|^2=x^2$$

    $$f(x)=e^x$$

    $$|f(x)|^2=e^{2x}$$

    Differentiable everywhere

    $$f|f|$$ is not differentiable at same points

    $$f(x)=e^x\Rightarrow |f|=e^x$$

    $$f|f|=e^{2x}\rightarrow$$ differentiable everywhere

    $$\Rightarrow$$ This option is wrong

    $$f+|f|$$ is differentiable everywhere

    $$f(x)=x$$, $$|f|=|x|$$

    $$f+|f|=\left\{\begin{matrix} 0, x < 0\\ 2x, x\geq 0\end{matrix}\right\}$$ not 
    differentiable at $$x=0$$

    Options (ii), (iii), (iv) are wrong.

    $$\Rightarrow$$ (ii) is correct.

  • Question 4
    1 / -0
    If y = sin $$^{-1} (x. \sqrt{1-x}+ \sqrt{x}\sqrt{1-x^2})$$, then $$\dfrac{dy}{dx} =$$
    Solution
    $$y=\sin^{-1}(x\sqrt{1-x}+\sqrt{x}\sqrt{1-x^2})\\ \quad=\sin^{-1}x+\sin^{-1}\sqrt x\\ \cfrac{dy}{dx}=\cfrac{1}{\sqrt{1-x^2}}+\cfrac{1}{\sqrt{1-x}}\times\cfrac{1}{2\sqrt{x}}\\ \quad=\cfrac{1}{\sqrt{1-x^2}}+\cfrac{1}{2\sqrt x\sqrt{1-x}}$$
  • Question 5
    1 / -0
    If $$f(x)=x^{n}\sin \dfrac {1}{x},f(0)=0$$
    Solution

  • Question 6
    1 / -0
    If $$x=\dfrac{e^t+e^{-t}}{2}, y=\dfrac{e^t-e^{-t}}{2}$$, then $$\dfrac{dx}{dy}=$$
    Solution
    $$x=\dfrac{e^t+e^{-t}}{2},$$       $$y=\dfrac{e^t-e^{-t}}{2}$$

    $$\Rightarrow \dfrac{dx}{dt}=\dfrac{e^t-e^{-t}}{2}=y,\dfrac{dy}{dt}=\dfrac{e^t+e^{-t}}{2}=x$$

    $$\Rightarrow \dfrac{dx}{dy}=\dfrac{dx}{dt}\times \dfrac{dt}{dy}$$
                 $$=y\times \dfrac{1}{x}$$
                 $$=\dfrac{y}{x}$$
    Hence, the answer is $$\dfrac{y}{x}.$$

  • Question 7
    1 / -0
    If $$y=a^{{a}^{{x}}}$$, then $$\dfrac {dy}{dx}=$$

    Solution
    $$\quad y={ a }^{ { x }^{ y } }$$
    taking logarithm on both sides
    $$\log { y } ={ x }^{ y }\log { a } $$
    again we take logarithm on both sides
    $$\log { \log { y }  } =y\left( \log { x }  \right) +\log { \log { a }  } $$
    taking derivative on both sides w.r. t $$x$$
    $$\cfrac { 1 }{ \log { y }  } .\cfrac { 1 }{ y } .\cfrac { dy }{ dx } =\cfrac { dy }{ dx } \log { x } +y.\cfrac { 1 }{ x } +0$$
    $$\Rightarrow \cfrac { dy }{ dx } \left( \cfrac { 1 }{ y\log { y }  } -\log { x }  \right) =\cfrac { y }{ x } \Rightarrow \cfrac { dy }{ dx } \left( \cfrac { 1-y\log { x } .\log { y }  }{ y\log { y }  }  \right) =\cfrac { y }{ x } $$
    $$\Rightarrow \cfrac { dy }{ dx } =\cfrac { { y }^{ 2 }\log { y }  }{ x\left( 1-y\log { x } .\log { y }  \right)  } $$
  • Question 8
    1 / -0
    If f (x + y) = 2 f(x) f(y) all x, y  $$\in$$ R where f' (0) = 3 and f (4) =2, then f'(4) is equal to 
    Solution
    Putting y = 0, f(x) = 2f(x)f(0)
    $$ \Rightarrow f(0) = \frac{1}{2} $$
    $$ f(x) = \lim_{h\rightarrow 0}\dfrac{f(x+h)-f(x)}{h} $$
    $$ =\underset{h\rightarrow 0} {\lim}\dfrac{2f(x)f(h)-f(x)}{h} $$
    $$ =\underset {h\rightarrow 0}{\lim} f(x)[\dfrac{2f(h)-1}{h}] $$
    $$ f^{1}(x) = \underset{h\rightarrow 0} {\lim}f(x)[\dfrac{2f(h)-2f(10)}{h}] $$
    $$ 2f(x)\underset{h\rightarrow 0} {\lim}\frac{f(0+h)-f10}{h} $$
    $$ = 2f(x)f^{1}(0) = 6f(x) $$
    let $$ f(x) = y \Rightarrow y^{1} = 6y $$
    $$ \dfrac{dy}{y} = 6x\Rightarrow lny = \frac{6x^{2}}{2}+c $$
    At $$ x = 4,y = 2 \Rightarrow ln2 = 48+c $$
    $$ \Rightarrow C = ln2-48 $$
    $$ \Rightarrow lny = 3x^{2}+ln2-48 $$
    $$ \Rightarrow at x = 4,lny = ln2 \Rightarrow y = 2 $$
    $$ \Rightarrow y^{1} = 6y = 12 at x = 4 \Rightarrow (B) $$
  • Question 9
    1 / -0
    If $$(2+\sin x)\dfrac{dy}{dx}+(y+1)\cos x=0$$ and $$y(0)=1$$, then $$y\left(\dfrac{\pi}{2}\right)$$ is equal to?
    Solution

  • Question 10
    1 / -0
    If $$(\cos x)^{y}=(\sin y)^{x}$$, then $$\dfrac{dy}{dx}=$$
    Solution
    Given,
    $$(\cos x)^y=(\sin y)^x$$
    Now taking logarithm with respect to the base $$e$$ we get,
    $$y\log (\cos x)=x\log(\sin y)$$
    Now differentiating both sides with respect to $$x$$ we get,
    $$\log(\cos x)\dfrac{dy}{dx}+y.\dfrac{(-\sin x)}{\cos x}$$$$=\log(\sin y)+x.\dfrac{(\cos y)}{\sin y}\dfrac{dy}{dx}$$
    or, $$(\log(\cos x)-x\cot y)\dfrac{dy}{dx}=\log (\sin y)+y\tan x$$
    or, $$\dfrac{dy}{dx}=\dfrac{\log (\sin y)+y\tan x}{\log(\cos x)-y\cot x}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now