Self Studies

Continuity and Differentiability Test - 29

Result Self Studies

Continuity and Differentiability Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x)=a|\sin x|+ be^{|x|}+c|x|^{3}$$, where $$a,b,c\in R$$, is differentiable at $$x=0$$, then 
    Solution

  • Question 2
    1 / -0
    If $$y=\tan{x}$$, then $$\dfrac{d^{2}y}{dx^{2}}=$$
    Solution
    Given $$y=\tan x$$
    $$\therefore \dfrac{dy}{dx}=\sec^2\;x\;\;\;\;\; .......\left( 1\right)$$
        $$\dfrac{d^2y}{dx^2}=2\sec x.\left( \sec x .\tan x \right)=2\sec^2x \tan x$$     $$.....\left( 2\right)$$
    substituting the value of $$\sec^2x$$ from $$\left(1\right) $$ in $$\left( 2\right)$$ we get,
    $$\Rightarrow \dfrac{d^2 y}{dx^2}=2\left( \dfrac{dy}{dx}\right) \tan x$$
    Also we have $$y=\tan x,$$ substituting we get 
    $$\Rightarrow \dfrac{d^2y}{dx^2}=2y\dfrac{dy}{dx}$$
    Hence, the answer is $$2y\dfrac{dy}{dx}.$$
  • Question 3
    1 / -0
    Let $$g$$ is the inverse function of $$f$$ and $$f'(x)=\dfrac {x^{10}}{(1+x^{2})}$$. If $$g(2)=a$$ then $$g'(2)$$ is equal to
    Solution
    g is inverse of function f
    $$ f'(x) = \frac{x^{10}}{(1+x^{2})}$$
    $$ g(2) = a$$
    $$ g'(2) = (1)$$
    $$ \rightarrow $$ g is inverse of function f, then
    $$ f(g(a)) = x$$
    differentiate with respect to x
    $$ f'(g(x)). g'(x) = 1 $$
    $$ g'(x) = \frac{1}{f'(g.(x))}$$
    $$ \rightarrow g'(2) = \frac{1}{f'(g(2))}$$
    $$ = \frac{1}{f'(a)}$$
    $$ = \frac{1}{\frac{a^{10}}{1+a^{2}}}$$
    $$ g'(2) = \frac{1+a^{2}}{a^{10}}$$ Ans 

  • Question 4
    1 / -0
    If $$f\left( x \right) =\left\{ \dfrac { x }{ { e }^{ { 1 }/{ x } }+1 }  \right\} $$ when $$x\neq 0,$$ then 0,when x=0
  • Question 5
    1 / -0
    If $$y=\sin^{-1}\dfrac{2x}{1+x^{2}}$$ then $${ \dfrac {dy}{dx} }$$ is :
    Solution

  • Question 6
    1 / -0
    If for $$x \in \left(0, \dfrac{1}{4}\right)$$, the derivative $$\tan^{-1} \left(\dfrac{6x\sqrt{x}}{1-9x^{3}}\right)$$ is $$\sqrt{x}.g(x)$$, then $$g(x)$$ equals :
    Solution
    $$y=\tan ^{ -1 }{ \left( \cfrac { 6x\sqrt { x }  }{ 1-9{ x }^{ 3 } }  \right)  } $$
    and $$x\in \left( 0,\cfrac { 1 }{ 9 }  \right) $$
    $$y=\tan ^{ -1 }{ \left( \cfrac { 6x\sqrt { x }  }{ 1-9{ x }^{ 3 } }  \right)  } =y=\tan ^{ -1 }{ \left( \cfrac { 2\left( 3{ x }^{ 3/2 } \right)  }{ 1-{ \left( 3{ x }^{ 3 } \right)  }^{ 3/2 } }  \right)  } =2\tan ^{ -1 }{ { \left( 3{ x }^{ 3/2 } \right)  }^{  } } \left[ 2\tan ^{ -1 }{ \left( \cfrac { 2x }{ 1-{ x }^{ 2 } }  \right)  }  \right] $$
    $$\cfrac { dy }{ dx } 2\tan ^{ -1 }{ { \left( 3{ x }^{ 3/2 } \right)  }^{  } } =2x\cfrac { 1 }{ 1+9{ x }^{ 3 } } \times 3\times \cfrac { 3 }{ 2 } \times { x }^{ 1/2 }=\cfrac { 9 }{ 1+{ x }^{ 3 }\sqrt { 3 }  } =\cfrac { 9 }{ 1+9{ x }^{ 3 } } $$
  • Question 7
    1 / -0
    If $$y = \exp \left\{ {{{\sin }^2}x + {{\sin }^4}x + {{\sin }^6}x + ....} \right\}$$ then $$\frac {dy}{dx}=$$
    Solution

  • Question 8
    1 / -0
    The function $$f\left( x \right) = \dfrac{{4 - {x^2}}}{{4x - {x^3}}}$$ is
    Solution
    $$f\left(x\right)= \dfrac{4-x^2}{4x-x^3}$$

    $$=\dfrac{4-x^2}{x\left(4-x^2\right)}$$

    $$for 4-x^2\neq 0$$

    $$x\neq\pm 2$$

    $$ f\left(x\right)=\dfrac{1}{x}$$

    so this function will be discontinue at $$x=0$$

    $$x=\pm2$$

    three Points

  • Question 9
    1 / -0
    If $$\dfrac {dy}{dx}=(e^ {y}-x)^ {-1}$$ where $$y(0)=0$$ then $$y$$ is expressed explicity as 
    Solution

  • Question 10
    1 / -0
    If $$x\dfrac{dy}{dx}=y(\log y-\log x +1)$$, then the solution of the equation 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now