Self Studies

Continuity and Differentiability Test - 30

Result Self Studies

Continuity and Differentiability Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If Rolle's therorem holds for $$f(x)=x\left( { x }^{ 2 }+ax+b \right) +2atx=\frac { 1 }{ 2 } $$in the interval (-1 , 1), then which of the following (S) is/are corect? 
    Solution

  • Question 2
    1 / -0
    Let $$f\left( x \right)$$ be non-constant differentiable function for all real $$x$$ and $$f\left( x \right) =f\left( 1-x \right) $$. Then Rolle's theorem is not applicable for $$f\left( x \right)$$ on
    Solution

  • Question 3
    1 / -0
    in $$\left[ a,b \right] $$ and differentiable in (a,b) then the value of 'c' for the pair of functions
    $$f\left( x \right) \sqrt { x, } \phi \left( x \right) =\dfrac { 1 }{ \sqrt { x }  } $$ is
  • Question 4
    1 / -0
    Let f(x) be a polynomial in x. Then the second derivation of f$$\left( { e }^{ x } \right) $$, is:
    Solution

    We have,

    $$f\left( x \right)$$ is a polynomial.

    Then,

    The second order of $$f\left( {{e}^{x}} \right)=?$$

    Find that,

    $$\dfrac{d}{dx}\left[ \dfrac{d}{dx}f\left( {{e}^{x}} \right) \right]=?$$

    So,

    We know that,

    $$ \dfrac{d}{dx}\left( {{e}^{x}} \right)={{e}^{x}} $$

    $$ So, $$

    $$ \dfrac{d}{dx}\left[ f\left( g\left( x \right) \right) \right]=g'\left( x \right)f'\left( g\left( x \right) \right) $$

    Now. Using formula,

    $$\dfrac{d}{dx}\left( I.II \right)=I.\dfrac{d}{dx}II+II.\dfrac{d}{dx}I$$

    So,

    $$\dfrac{d}{dx}\left[ f\left( {{e}^{x}} \right) \right]={{e}^{x}}.f'\left( {{e}^{x}} \right)\,\,\,......\,\,\left( 1 \right)$$

    Again differentiating and we get,

    $$ \dfrac{d}{dx}\left[ \dfrac{d}{dx}f\left( {{e}^{x}} \right) \right]=\dfrac{d}{dx}\left[ f'\left( {{e}^{x}} \right).{{e}^{x}} \right]=f'\left( {{e}^{x}} \right){{e}^{x}}+{{e}^{x}}\left[ {{e}^{x}}f''\left( {{e}^{x}} \right) \right] $$

    $$ =\dfrac{d}{dx}\left[ \dfrac{d}{dx}f\left( {{e}^{x}} \right) \right]={{e}^{x}}f'\left( {{e}^{x}} \right)+{{e}^{2x}}f''\left( {{e}^{x}} \right) $$

    Hence, this is the answer.

  • Question 5
    1 / -0
    Let f be a differentiable function satisfying the condition $$f(\dfrac{x}{y}) = \dfrac{f(x)}{f (y)}$$ for all $$x, y ( \neq 0) \epsilon R, f(y) \neq 0$$. If $$f' (1) =2 $$, then $$f ' (x) $$ is equal to
    Solution

  • Question 6
    1 / -0
    Solve  $$ x ^ { 4 } \left( \dfrac { d y } { d x } \right) ^ { 2 } - x \dfrac { d y } { d x } - y = 0$$
  • Question 7
    1 / -0
    If 
    $$f\left( x \right) =\dfrac { \log { \left( 1+ax \right) -\log { \left( 1-bx \right)  }  }  }{ \begin{matrix} x \\ =-c \end{matrix} } ,\begin{matrix} \\ \\ x\neq 0 \\ \\x=0 \end{matrix}$$ and is continuous at $$x=0$$

     then the line $$ax+by+c=0$$ passes though the point
    Solution

  • Question 8
    1 / -0
    $$\dfrac{d}{dx}$$ { $$\cot^{-1} \dfrac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} - \sqrt{1-x}}$$ } =
    Solution

  • Question 9
    1 / -0
    If $$f(x)$$ is a four times differentiable even function, then $$\int_{-3}^{3}(x^{3}f(x)+xf''''(x)+2)dx$$    is equal to 
    Solution

  • Question 10
    1 / -0
    Let f, g and h are function differentiable on some open interval around $$0$$ and satisfy the equations $$f'=2f^2gh+\dfrac{1}{gh}, f(0)=1, g'=fg^2h+\dfrac{4}{fh}, g(0)=1$$ and $$h'=3fgh^2+\dfrac{1}{fg}, h(0)=1$$. The function f is given by?
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now