Self Studies

Continuity and Differentiability Test - 31

Result Self Studies

Continuity and Differentiability Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$y=1-\cos\theta,x=1-\sin\theta$$, then $$\dfrac{dy}{dx}$$ at $$\theta=\dfrac{\pi}{4}$$ is 
    Solution

  • Question 2
    1 / -0
    If $$x=\sqrt{2^{cosec^{-1}t}}$$ and $$y=\sqrt{2^{sec^{-1}t}}(|t|\geq 1)$$ then $$\dfrac{dy}{dx}$$ is equal to:
    Solution

  • Question 3
    1 / -0
    For  $$x > 1 ,$$  if  $$( 2 x ) ^ { 2 y } = 4 e ^ { 2 x - 2 y } ,$$  then   $$\left( 1 + \log _ { \mathrm { e } } 2 \mathrm { x } \right) ^ { 2 } \dfrac { \mathrm { dy } } { \mathrm { dx } }$$  is equal to :
    Solution
    $$( 2 x ) ^ { 2 y } = 4 e ^ { 2 x - 2 y }$$

    $$2 y  \ln 2 x = \ln 4 + 2 x - 2 y$$

    $$\mathrm { y } = \dfrac { \mathrm { x } +  \mathrm { \ln } 2 } { 1 +  \mathrm { \ln } 2 \mathrm { x } }$$

    $$y ^ { \prime } = \dfrac { ( 1 + \ln 2 x ) - ( x + \ln 2 ) \dfrac { 1 } { x } } { ( 1 + \ln 2 x ) ^ { 2 } }$$

    $$\mathrm { y } ^ { \prime } ( 1 +  \mathrm { \ln } 2 \mathrm { x } ) ^ { 2 } = \left[ \dfrac { \mathrm { x }  \mathrm { \ln } 2 \mathrm { x } -  \mathrm { \ln } 2 } { \mathrm { x } } \right]$$
  • Question 4
    1 / -0
    $$\dfrac{d}{dx}\left[\tan h^{-1}\left(\dfrac{2x}{1+x^2}\right)\right]=?$$
    Solution

  • Question 5
    1 / -0
    A differential function satisfies equation $$f(x)=\int_{0}^{x}(f(t)\cos\ t-\cos(t-x))dt$$ then
    Solution

  • Question 6
    1 / -0
    If  $$f ( x )$$  and  $$g ( x )$$  are differentiable functions in  $$[ 0,1 ]$$  such that  $$f ( 0 ) = 2 , f ( 1 ) = 6 , g ( 0 ) = 0 , g ( 1 ) =2$$   then there exists  $$0 < c < 1$$  such that
    Solution

  • Question 7
    1 / -0
    If $$ y = \sin ^ { - 1 } x$$ then $$ \frac { d y } { d x } $$ is equal to 
    Solution
    $$y=\sin ^{-1}x\\x=\sin y \\\dfrac{dx}{dx}=\dfrac{d}{dx}\sin y\\1=\cos y \dfrac{dy}{dx}\\\dfrac{dy}{dx}=\sec y$$
  • Question 8
    1 / -0
    If $$f(x)=0$$ for $$x < 0$$ and $$f(x)$$ is differential at $$x=0$$ then for $$x\ge 0, f(x)$$ may be  
    Solution

  • Question 9
    1 / -0
    If $$y={ \tan }^{ -1 }{ ax}$$ then, which of the following is true
    Solution
    Hint:- For a composite function $$f\left( g\left( x \right) \right)$$ the chain rule for the derivative is expressed as $$f'\left( x \right)g'\left( x \right)$$.

    The derivative of the function $$y = {\tan ^{ - 1}}x$$ is given as $${{dy} \over {dx}} = {1 \over {1 + {x^2}}}$$.

    Given:- 
    The function is given as $$y = {\tan ^{ - 1}}\left( {ax} \right)$$.

    Step 1: Find the derivative of the function by applying chain rule.
    $$ \Rightarrow {{dy} \over {dx}} = \left[ {{{\tan }^{ - 1}}\left( {ax} \right)} \right]'$$
    $$ \Rightarrow {{dy} \over {dx}} = {1 \over {1 + {{\left( {ax} \right)}^2}}} \times \left( {ax} \right)'$$

    Step 2: Find the derivative of the term $$\left( {ax} \right)'$$ and simplify the expression.
    $$ \Rightarrow {{dy} \over {dx}} = {1 \over {1 + {{\left( {ax} \right)}^2}}} \times a$$
    $$ \therefore {{dy} \over {dx}} = {a \over {1 + {{\left( {ax} \right)}^2}}}$$

    Final step: The derivative of the function $$y = {\tan ^{ - 1}}\left( {ax} \right)$$ is given by the relation 
    $$ \ {{dy} \over {dx}} = {a \over {1 + {{\left( {ax} \right)}^2}}}$$

  • Question 10
    1 / -0
    If $$f(x)$$ is a differentiable function $$\forall \ x\ \epsilon \ R$$ so that, $$f(2)=4,\ f'(x)\ge 5\ \forall \ x\ \epsilon \ [2,6]$$, then, $$f(6)$$ is :
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now