Self Studies

Continuity and Differentiability Test - 33

Result Self Studies

Continuity and Differentiability Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$f(x + y) = f(x) f(y)$$ for all $$x$$ and $$y$$. If $$f(0) = 1, f(3) = 3$$ and $$f'(0) = 11$$, then $$f'(3)$$ is equal to
    Solution
    We have,
    $$f'(x) = \underset{h\to 0}{\lim} \dfrac{f(x+h)-f(x)}{h}$$

    $$\Rightarrow f'(3) = \underset{h\to 0}{\lim} \dfrac{f(3+h)-f(3)}{h}$$

    $$=\underset{h\to 0}{\lim} \dfrac{f(3)f(h) - f(3+0)}{h}$$

    $$=\underset{h\to 0}{\lim} \dfrac{f(3)f(h) - f(3)f(0)}{h}$$

    $$=f(3) \underset{h\to 0}{\lim} \dfrac{f(h)-f(0)}{h}$$

    $$=f(3) \underset{h\to 0}{\lim} \dfrac{f(0+h)-f(0)}{h}$$

    $$= f(3)f'(0)$$

    $$=3\times 11$$

    $$=33$$
  • Question 2
    1 / -0
    Let $$f(x+y) = f(x) f(y) $$ and $$f(x) = 1+\sin(3x)g(x)$$, where $$g$$ is differentiable. The $$f'(x)$$ is equal to
    Solution
    $$f'(x) = \underset{h\to 0}{\lim} \dfrac{f(x+h) - f(x)}{h}$$

    $$=\underset{h\to 0}{\lim} \dfrac{f(x)f(h) - f(x)}{h}$$

    $$= f(x) \underset{h \to 0}{\lim} \left(\dfrac{1+\sin 3h(g(h))-1}{h}\right)$$

    $$3f(x) \underset{h\to 0}{\lim} \dfrac{\sin 3h}{3h} \underset{h\to 0}{\lim} g(h)$$

    $$=3 f(x) \times 1 \times g(0) = 3f(x) g(0)$$
  • Question 3
    1 / -0
    If $$y=\cos^{-1}x^{3}$$ then $$\dfrac{dy}{dx}=?$$
    Solution

  • Question 4
    1 / -0
    If $$y=\cos^{-1}(4x^{3}-3x)$$ then $$\dfrac{dy}{dx}=?$$
    Solution

  • Question 5
    1 / -0
    If $$y=\tan^{-1}\left(\dfrac{a\cos x-b\sin x}{b\cos x+a\sin x}\right)$$ then $$\dfrac{dy}{dx}=?$$
    Solution
    Let, $$\dfrac{a}{b}=\tan\theta$$

    $$y=\tan^{-1}\left(\dfrac{a\cos x-b\sin x}{b\cos x+a\sin x}\right)\\\,\,=\tan^{-1}\left(\dfrac{\dfrac{a}{b}-\tan x}{1+\dfrac{a}{b}\tan x}\right)\\\,\,=\tan^{-1}\left(\dfrac{\tan \theta-\tan x}{1+\tan \theta \tan x}\right)$$
       $$=\tan^{-1}\tan (\theta-x)\\=\theta-x\\=\left(\tan^{-1}\dfrac{a}{b}-x\right)$$.
    $$\therefore \dfrac{dy}{dx}=-1$$.
  • Question 6
    1 / -0
    If $$y=\tan^{-1}\left(\dfrac{\sqrt{a+\sqrt{x}}}{1-\sqrt{ax}}\right)$$ then $$\dfrac{dy}{dx}=?$$
    Solution

  • Question 7
    1 / -0
    If $$y=\tan^{-1}(\sec x+6\tan x)$$ then $$\dfrac{dy}{dx}=?$$
    Solution

  • Question 8
    1 / -0
    If $$y=\sin^{-1}(3x-4x^3)$$ then $$\dfrac{dy}{dx}=?$$
    Solution

  • Question 9
    1 / -0
    If $$y=\tan^{-1}\left\{\dfrac{\cos x+\sin x}{\cos x-\sin x}\right\}$$ then $$\dfrac{dy}{dx}=?$$
    Solution

  • Question 10
    1 / -0
    Which of the following statement is always true ([ .] represents the greatest integer function)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now