Self Studies

Continuity and ...

TIME LEFT -
  • Question 1
    1 / -0

    The derivative of $$cosec^{-1} \left( \dfrac{1}{2x^2 - 1} \right )$$ with respect to $$\sqrt{1 - x^2}$$ at $$x = \dfrac{1}{2}$$ is

  • Question 2
    1 / -0

    $$x$$$$1$$$$2$$$$3$$$$4$$$$5$$
    $$f(x)$$$$4$$$$3$$$$7$$$$1$$$$3$$
    The function f is continuous on the closed interval $$[1, 5]$$ and values of the function are shown in the table above. If the values in the table are used to calculate a trapezoidal sum, the approximate value of $$\int_{1}^{5}f(x)dx$$ is

  • Question 3
    1 / -0

    The derivative of $$\displaystyle (\tan x)^{x}$$ is equal to-

  • Question 4
    1 / -0

    If $$f(x) = \left\{\begin{matrix}\dfrac {1 - \sin x}{(\pi - 2x)^{2}} \cdot \dfrac {\log \sin x}{\log (1 + \pi^{2} - 4\pi x + 4x^{2})},& x\neq \dfrac {\pi}{2}\\ k, & x = \dfrac {\pi}{2}\end{matrix}\right.$$ is continuous at $$x = \dfrac {\pi}{2}$$, then $$k$$ is equal to

  • Question 5
    1 / -0

    Find derivative of $$\tan^{-1}\dfrac{\cos x-\sin x}{\cos x+\sin x}$$ w.r.t. $$x$$.

  • Question 6
    1 / -0

    If $$y=\sqrt { \left( a-x \right) \left( x-b \right)  } -\left( a-b \right) \tan ^{ -1 }{ \sqrt { \dfrac { a-x }{ x-b }  }  } $$, then $$\dfrac { dy }{ dx } $$ is equal to

  • Question 7
    1 / -0

    Let $$f(x) = \left\{\begin{matrix}2a - x, &if\ -a < x < a \\ 3x - 2a, &if\ a \leq x \end{matrix}\right.$$. Then, which of the following is true?

  • Question 8
    1 / -0

    If $$x = A\cos 4t + B\sin 4t$$, then $$\dfrac {d^{2}x}{dt^{2}}$$ is equal to

  • Question 9
    1 / -0

    The function $$f(x)=\left[ { x }^{ 2 } \right] +{ \left[ -x \right]  }^{ 2 }$$, where $$[]$$ denotes the greatest integer function is

  • Question 10
    1 / -0

    Find the derivative of $$\dfrac{\tan^{-1}x}{1+\tan^{-1}x}$$ w.r.t. $$\tan^{-1}x$$.

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now